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498 L. W. MORLAND AND A. D. COX

This paper treats the propagation of stress waves through an elastic-plastic medium on the assump-
tion of uni-axial displacement. With the further simplification to a piecewise linear stress-strain
curve in terms of engineering stress and strain, wave equations are obtained for the longitudinal
stress in both elastic and plastic regions, each with a distinct constant Lagrangian wave speed.
The stress distribution in any region is then simply expressed in terms of two wave functions. In a
general motion the medium will be divided into a sequence of alternating elastic and plastic
regions separated by moving interfaces. A detailed analysis is presented for a single-interface wave
interaction under general initial conditions, namely, continuous initial waves in the two directions
in both elastic and plastic regions with a non-uniform yield stress in the elastic region.

For different sets of initial conditions six distinct types of solution are shown to exist, and these
are classified according to the direction and speed of the interface. In particular, two types involve
interface speeds in excess of the elastic wave speed, not, to the authors’ knowledge, demonstrated in
previous plastic wave treatments, noting the absence of possible shock formation for the present
linearized stress-strain laws. Further, it is shown that stress discontinuities cannot form at the inter-
face (or elsewhere) from initially continuous stress profiles.

Associated with the different types of solution are four distinct sets of interface conditions so that
there is no common form for the interaction solution. Each of the six types of solution is shown to
be consistent with the elastic-plastic model only under a restricted set of initial conditions, and these
sets are found to be mutually exclusive for the six types, thus deciding a unique choice for the type of
single-interface solution. The six sets, however, are not inclusive of all possible initial conditions,
indicating a need for multi-interface solutions in the exceptional situations. Multi-interface solu-
tions may be possible even in the non-exceptional situations, but this possibility is felt to be
unlikely.

Finally, it can be noted that the analysis dealing with validity of solution is, for most cases, only
local in that it applies in some small neighbourhood of the current point on the interface path,
being based on expansions about this point. The results of such local analysis will therefore extend
to the case of non-uniform wave speeds arising from non-linear stress-strain laws, provided that no
shock is formed in the neighbourhood, but a global solution can no longer be expressed simply in
terms of wave functions.

1. INTRODUCTION

The propagation of finite amplitude waves through a metal is of importance, for example,
in the investigation of dynamic response by controlled tests and in the prediction of explosion
effects on structures. Theoretical analysis must be based on constitutive assumptions for the
material, and the well established elastic-plastic model (see, for example, Hill (1950))
provides the simplest description which is reasonably realistic. Further approximations,
such as rigid-plastic behaviour or incompressibility, allow infinite signal speeds in the
material, and so cannot provide an accurate description of the transient effects of dynamic
loading. In the present work the elastic-plastic isotropic work-hardening model is taken to
describe the constitutive behaviour. This model recognizes two essentially different types
of material behaviour, the choice depending on both the current state of stress and loading
history of a material element, and in a general motion a given material element may alter-
nate repeatedly between elastic and plastic states. Even simple boundary orinitial conditions
produce such a situation. In view of this complexity, few exact wave solutions have been
obtained, analytically or numerically, and those that have been are restricted to one-
dimensional propagation, uni-axial or spherical. A detailed survey and bibliography of
dynamic non-elastic behaviour of metals is given in an article by Hopkins (1966).

In an elastic-plastic analysis, a trial solution requires an assumed wave pattern, that is, a
prescribed sequence of elastic and plastic regions with respective wave motions, separated
by moving interfaces. A suitable choice of pattern may be intuitively clear for simple loading
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conditions, if not in general, but it is shown in the present investigation that even simple
conditions lead to an unforeseen complexity. Having found a suitable wave pattern which
leads to a valid solution, that is, stress distributions and histories in each region consistent
with the elastic-plastic model, there remains the vital question of uniqueness. Are there other
choices of wave pattern which also lead to valid solutions? This is the main theme of the
present investigation, which analyzes in detail a wide class of possible wave patterns in uni-
axial propagation. It is shown that for a given set of initial conditions the choice of pattern
within this class is unique, and, of course, is predetermined by the initial conditions. At the
same time, the existence of a valid solution for a wide range of initial conditions is exhibited.

The treatment is based on wave motions in uni-axial displacement, which has the virtue
that the nature of the physical arguments is not obscured by analytical detail. This simple
displacement geometry is often adopted as an approximation for the wave motion initiated
in a plate by normal loading. Further, the wave patterns show much qualitative similarity
with the corresponding spherically symmetric system, and although the latter is analytically
more involved, certain results have an analogous derivation. A detailed discussion of the
equations governing uni-axial dynamic elastic-plastic deformation, for the isotropic work-
hardening model, has been given by Morland (1959)—subsequently referred to as [M].
The equations are most simply expressed in terms of engineering stress and strain, and
Lagrangian coordinates, and yield wave equations for the longitudinal stress in both elastic
and plastic regions. In these variables, with stress and strain measured positive in com-
pression, both elastic and plastic longitudinal stress-strain paths exhibit upward curvature
and the corresponding wave speeds are increasing functions of the stress, significant only
over a longer plastic path. Compression waves may then form shocks. From the solutions
examined in [M], including the formation of a plastic shock, it was concluded that for the
typically small curvature of the plastic longitudinal stress-strain path, satisfactory results,
qualitative and quantitative, are obtained by assuming uniform, but distinct, elastic and
plastic Lagrangian wave speeds. This corresponds to a piece-wise linear stress-strain path,
all elastic and plastic paths having respectively the same constant slope. The resulting
simplification has considerable analytical advantage, and is adopted in the present investi-
gation since our concern is with principles rather than fine detail.

On this model the longitudinal stress satisfies a wave equation with constant wave speed
in both elastic and plastic regions, the elastic wave speed being greater than the plastic wave
speed. The stress in any region can in general be expressed simply in terms of two wave
functions, representing waves travelling in the two directions.

Although shocks cannot build up according to the linearized theory, stress discontinuities
are considered as a convenient mathematical limit for very short waves. By treating them
in this spirit and postulating that stress jumps must follow the same stress-strain path as if
the stress change occurs continuously, it is shown that stress discontinuities must propagate
with one of the two wave speeds. In particular, a jump embracing both an elastic and plastic
change separates into the two parts, each travelling with the appropriate wave speed. Thus
both continuous and discontinuous disturbances of a given type travel with the same speed,
and it is appropriate to refer to elastic and plastic signal speeds.

Any wave pattern thus comprises a sequence of alternating elastic and plastic regions in
one space dimension, each in general containing waves moving in the two directions, and

64-2
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500 L. W. MORLAND AND A. D. COX

separated by interfaces moving along the propagation axis. We define the term wave inter-
action to mean the motion of adjacent elastic and plastic regions and their common inter-
face. The wave pattern is, in general, composed of a series of wave interactions, each with a
distinct interface, which may be treated separately; these we describe as single-interface
interactions and solutions. It will be shown, however, that in certain cases no valid single-
interface solution exists in the neighbourhood of some critical point in the space-time plane.
Then a multi-interface interaction develops, involving two or more distinct interface paths
fanning out from the single point. During some subsequent time interval the multi-interface
solution requires appropriate simultaneous matching across each of the interfaces involved,
and is inherently more intricate than the single-interface situation. No detailed multi-
interface solution is obtained in the present work, which is confined to the solution of a
general single-interface interaction.

The required matching conditions across a moving interface involve both conservation of
mass and momentum, and consistency with the elastic-plastic model on both elastic and
plastic sides. The number of unknown quantities to be determined—the wave functions on
both sides and the interface velocity—depends on the initial conditions and on the interface
speed in comparison with the elastic and plastic wave speeds, together with its direction.
Direction here means whether the movement is into the elastic region or into the plastic
region. In the former situation, a particle crossing the interface changes from an elastic to a
plastic state, with the reverse in the latter situation, and we delineate these two broad classes
by the descriptions elastic-plastic interface, and plastic-elastic interface, respectively.
Within each class, depending on interface speed, three different cases are theoretically
possible for interfaces at which the stress is continuous, and it is shown that in all six cases the
elastic-plastic model provides exactly the required number of matching conditions. It is
these results which have an analogous extension to the spherically symmetric problem. For
a simple case treated in [M] the appropriate conditions were deduced by direct physical
arguments, but such deduction fails in general, and has in fact produced incorrect conditions
in a treatment of the spherical problem. In each class, one case involves an interface moving
with speed in excess of the elastic wave speed, a situation not, to our knowledge, previously
considered (noting the absence of shocks in the present linearized theory). Interfaces with
stress discontinuities will be discussed below.

Itis found that for continuous interfaces there are four distinct sets of conditions applying
to the different cases, so that there is no common solution to the interaction for all cases. It
is therefore necessary to determine the solution for each case separately, using the appro-
priate interface conditions. By obtaining all six types of formal solutions for an arbitrary
compatible set of initial conditions, the consistency of each one with its assumed interface
motion and the elastic-plastic model can be tested. For some conditions it is quickly evident
that certain types of solution are not consistent. It is shown that each type of solution is valid
only under a particular set of restrictions on the initial conditions and that the six sets of
restrictions are mutually exclusive. Thus we demonstrate that only one of the six types of
single-interface solutions can be valid for a given set of initial conditions, and furthermore,
determine the restrictions which predict the unique choice. At the same time the existence
of the valid solution under appropriate conditions is exhibited. However, there are limited
sets of initial conditions for which none of the above six solutions is valid, when presumably
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a multi-interface interaction must develop. The uniqueness and existence proof, then, is
limited to single-interface solutions.

Solutions involving stress discontinuities at an interface, omitted from the above discus-
sion, are in fact much simpler in form. Since a discontinuity must propagate with one of the
wave speeds, the motion of a discontinous interface is predetermined by the elastic or plastic
change it represents and the further interface conditions then give explicit representations
for the wave functions in terms of the initial stress wave profiles and initial yield stress
distribution. For a continuous interface, the wave function arguments involve the unknown
interface path which is itself defined only by an implicit equation. It is easily shown that no
valid discontinuous interface solution is possible for initially continuous stress wave profiles,
and that no stress discontinuity can be created by a wave interaction. Thus stress dis-
continuities (in the linearized theory) can occur only through discontinuous boundary
loading, and then they propagate in a readily determined manner. Attention here is con-
fined to initially continuous stress wave profiles.

The single interface interaction comprises adjacent elastic and plastic regions separated
by a moving interface, and by definition there is some finite neighbourhood of the interface
containing no further interface. The most general initial conditions involve stress waves in
the two directions in both elastic and plastic regions, and an arbitrary yield stress distribu-
tion, consistent with the model, in the elastic region. The latter is only relevant when the
interface is in the elastic-plastic class and so moves into the elastic region. After a time,
waves from outer regions may reach the interface and provide new initial conditions for a
subsequent interaction, but for some finite interval of time the interaction is influenced only
by local initial conditions which may be considered in isolation. The initial waves must
describe stress changes over the immediately preceding time interval which are consistent
with the elastic-plastic model. Any such elastic and plastic wave patterns separated by an
interface must represent a valid solution of one of the six types of interaction, perhaps a
trivial solution. Further, any of the six types of solution represents a valid set of initial
conditions. Thus a treatment of each of the six types of interaction for general initial
conditions covers all thirty-six possible cases of successive interactions. That is, one type of
interaction followed by another type, including the six trivial cases of successive identical
types. The overall solution of an interaction involving repeated changes of the type of
solution may therefore be constructed uniquely in a step-by-step manner, provided that
single-interface solutions exist at each stage.

Two simple initial value problems are themselves of interest, those involving only single
initial waves in both regions. One is the overtaking interaction, necessarily of a plastic wave
by an elastic wave in view of their relative speeds, which is treated in [M] but without the
uniqueness proof. The second is a meeting interaction between oncoming elastic and plastic
waves, which is treated here as the initial interaction. The analysis exhibits the essential
features of an interaction solution. It is then straightforward to extend the solutions to
include the different types of general initial conditions, and so complete the investigation of
all possible situations. The overtaking interaction is a particular case.
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502 L. W. MORLAND AND A. D. COX

2. GOVERNING EQUATIONS FOR UNI-AXIAL DISPLACEMENT

It is proposed to consider a uni-axial displacement plane wave motion in which all
dependent variables are functions only of the time ¢ and a single rectilinear coordinate x.
Further, xis chosen to be a Lagrangian coordinate denoting the initial particle position along
the axis of motion, or longitudinal direction, as this leads to an exact linear equation of
motion. The particle displacement is everywhere directed along the x-axis and is denoted
by u(x, t). For this simple displacement field, the deformation is defined by the single non-
vanishing principal strain component in the x-direction, and it is most convenient to adopt

the engineering measure
€ = — du/ x, (2-1)

which represents the contraction per unit initial length. Defining strain and stress to be
positive in compression follows the convention in [M] where the detailed derivation of the.
governing equations is given ; here we will just define notation and present a brief discussion
of the main features. The compressive principal stress in the x-direction (with no distinction
between initial and current cross section area) is denoted by ¢. In addition, there exist non-
zero lateral principal stresses which provide the uni-axial displacement constraint, but these
are eliminated in the final equations which are written explicitly in terms of the longitudinal
stress and strain components o, €.

In this simple displacement geometry, the isotropic work-hardening model provides an
explicit longitudinal stress-strain relation for both elastic and plastic changes of a given
material element, identical for both Von Mises and Tresca yield criteria. Elastic changes
satisfy the differential relation

do  K+44%u .
de  1—¢’ (2-2)
and plastic changes satisfy g—g = I%+ ?—)?1—%_‘?) dd—aes. (2:3)

In these equations K and g are respectively the elastic bulk and shear moduli, and o,(¢) is
derived from the plastic stress-strain relation in simple compression. Since the work-
hardening contribution, do,/de, is small in comparison with K, it may be neglected so that
here the perfectly plastic model provides a good approximation. Upward curvature of the
stress-strain paths follows from the denominator 1 —¢, and the assumption that K and x are
increasing functions of pressure and consequently of the compressive strain ¢. However, the
data and wave solution investigated in [M] show that the contribution of this curvature is
not important in the overall stress distribution, and accordingly we adopt the simplifying
approximations of constant elastic and plastic slopes. The elastic slope is clearly greater
than the plastic slope. Integration constants are determined by the stress-strain state at
which the change from the elastic to the plastic equation, or vice versa, last occurred.
Typical loading-unloading cycles OYMM'N and OYZZ’'N are shown in figure 1. The
elastic paths Y'Y, Z'Z, M’M are reversible while the plastic yield path YZM and reverse
path M'Z"Y’ are followed only in the sense shown by the arrows. Thus, at a given element
x, ¢ must be non-decreasing on YZM, and non-increasing on M’Z"Y’, both corresponding
to a positive rate of plastic working. Y is the initial yield point and Z, M are yield points for
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an element last plastic at the states Z and M respectively. Hence a region in which different
elements have been previously loaded to different levels on the yield path has a correspond-
ing distribution of yield points, that is a non-uniform distribution of longitudinal yield stress.
This does not conflict with the approximation of perfect-plasticity as different yield values
of the longitudinal stress ¢ correspond to different points on the fixed yield surface in
principal stress space, recalling that there are also non-zero lateral stresses. It is convenient
to refer to the yield value of ¢ as the yield stress, and a varying distribution is described as
kinematic hardening. The point N represents the permanent or plastic strain resulting from
the complete loading-unloading cycle. In this model the elastic ranges MM', ZZ’, YY' are
double the initial compression range OY, but this is not essential to the following analysis.
All permissible stress-strain states lie between YM and M'Y’ continued.

Y /

Ficure 1. Longitudinal stress-strain path.

It remains to make the assertion that in the present rate-independent theory discon-
tinuous changes of stress will be regarded as limits of the corresponding continuous change,
and therefore follow (instantaneously) the same stress-strain path. In particular, a jump
involving both elastic and plastic changes, as, for example, a jump from state O to the stress
level at M, follows the required elastic and plastic paths in succession, in this example OY
and YM. That is, the same final state M is attained by the elastic-plastic path OYM pre-
scribed by the model-—no alternative paths are permitted.

On the assumption of uniform initial density p,, and neglect of body force, the longitudinal
momentum equation is exactly I 92y

Ox po’a—tf, (2'4)

and the lateral equilibrium equations are already used. The wave pattern separates the
axis into a sequence of finite elastic regions and finite plastic regions at each instant of time.
In a single plastic region the stress changes at every element follow either the yield path YM
or reverse yield path M"Y’, since an exchange of path involves an intermediate elastic region
—possibly just an elastic stress discontinuity. Thus in a plastic region there is a common
longitudinal stress-strain relation ¢ = $(¢). However, in an elastic region it has been noted
that different elements may follow different elastic paths, for example, MM’ or ZZ' in
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504 L. W. MORLAND AND A. D. COX

figure 1, corresponding to different plastic histories; this is illustrated by the overtaking
interaction in [M]. Here there is a non-homogeneous stress-strain relation ¢ = S(e, x),
which includes the homogeneous plastic relation as a special case. Thus, differentiating
(2-4) partially with respect to x, at constant ¢, and using (2-1), gives

% 1 9%
W, o (2-5)

while differentiating the non-homogeneous stress-strain relation twice with respect to ¢, at

constant x, gives 2 2 2 2
Po IS d%e 3.5'(36) (2-6)

o de o " e \it

Now the slopes of the stress-strain paths are assumed to have the same constant values for

all elements so that 3]0 = pyc2 (=0, 1), (2-7)

where o = 0, 1 refer respectively to elastic and plastic paths and ¢, ¢, are constants satisfying
o > €. (2-8)

Thus, in either an elastic or a plastic region d25/d? vanishes, and the strain can be elimi-
nated between (2-5) and (2-6), giving
e 1 o

W (2:9)

That is, the longitudinal stress in elastic and plastic regions satisfies the wave equation with
constant Lagrangian wave speeds ¢, ¢, respectively, and the elastic wave speed ¢ is greater
than the plastic wave speed ¢,.

In both elastic and plastic regions, then, a continuous stress distribution is described in
terms of two arbitrary wave functions,

o =g(x—c,t)+h(x+c,t), (2-10)

where g, h represent waves propagating in the positive and negative directions respectively,
and depend on initial and boundary conditions.

The other physical variable which explicitly arises in the interface conditions is the
particle velocity with respect to fixed axes,

v = du/dL. (2-11)
Along the characteristics of (2-9) the characteristic relations give
0+ pyc,v = constant on dx/dt = +c,, (2-12)

where, in general, the constant differs between characteristics of both positive and negative
families. A useful alternative expression for v in terms of ¢ is obtained by integrating (2-4)
with respect to ¢ at fixed x, namely
1 (tdo
—— | =dt (2-13)
pod Ox

P ==

+ This situation was expressed incorrectly in [M].
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Further, v also satisfies the appropriate wave equation in each region, while « and ¢ do so
only for the homogeneous stress-strain relation.

It remains to consider the motion of a stress discontinuity, excluded from the above
discussion. If the discontinuity surface is propagating instantaneously with velocity V with
respect to fixed axes, and conditions on the two sides are denoted by suffixes 1 and 2,
conservation of mass and momentum require

pa(va—V) = py(0,—7V), (2-14)

Tyt po(vy— V)2 = a1 +py (v, — V)2 (2-15)

Here p,, p, refer to current densities, and are related to the strain and initial density (mass

conservation) by pa1=62) = pi(1=e1) = po (2:16)
Eliminating V between (2-14) and (2:15), and p,, p, by (2:16), shows that

Po(va—0y)? = (0,—0y) (6—¢;). (2-17)

If the path of the discontinuity surface in the Lagrangian (x, ) plane is x = X(¢), so that its
Lagrangian velocity is X (¢), then since displacement remains continuous across the surface,
so does du/dt+ X duox, which implies

vy— Xey = v, — Xe. (2-18)
Eliminating v,—v, between (2-17) and (2-18) gives
; 1 oy,—0

X)2=—21, 219

&) Po €26 ( )

Thus, if the stress jump is the limit of a continuous change along a single elastic or single
plastic path, with the respective constant slopes defined by (2:7), then

oy—0, o,—0,

Pots =t Pols (2:20)
where the sign of the particle velocity jump is the same as that of X. That is, elastic and
plastic discontinuities propagate (in the Lagrangian coordinate system) with the respective
wave speeds. Further, the previous assertion that a jump involving both elastic and plastic
changes is the limit of the separate elastic and plastic continuous changes followed in turn,
implies that such a discontinuity splits into the corresponding single-state jumps, each of
which propagates in the manner described above.

It has been shown that both continuous and discontinuous single-state stress changes
propagate, according to the linearized model, along characteristics in the Lagrangian (x, ¢)
plane with the appropriate velocity 4-¢,, 4-¢,. However, interfaces between elastic and
plastic regions, across which stress is continuous but there is a change in the constitutive
stress-strain relation, are not confined to propagation along characteristics. In fact, as
shown in the next section, such interfaces may propagate with any velocity.

(X)?=0¢5 e—e =

3. DIscUsSION OF WAVE INTERACTIONS AND INTERFACE CONDITIONS

All practical cases of dynamic loading on a boundary will result in a sequence of alter-
nating elastic and plastic regions separated by moving interfaces. However, such motions in
general divide naturally into a series of wave interactions, each involving two adjacent

65 Vor. 264. A.
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clastic and plastic regions and a single separating interface. Exceptional situations can arise
when more than one interface develops at a single point in the (x, ¢) plane, and then for
some subsequent interval of time the motions in all the adjacent regions must be considered
simultaneously. These we have termed multi-interface interactions, but since in most
situations a valid single-interface solution is exhibited, only the need in particular cases for
multi-interface interactions has been indicated, without attempting to analyse essentially
more complex solutions. Attention, then, is confined to the single-interface interaction, with,
in general, waves in the two directions in both elastic and plastic regions.

The solution of a single-interface interaction involves the determination of all the stress
wave functions and the interface path ¥ = X(¢). The wave functions are solutions of the
equations of motion only within the elastic and plastic regions and it is necessary to satisfy
mass and momentum conservation across the interface. Ifstress is discontinuous at the inter-
face, then by (2:20) the interface velocity X (f) has an appropriate value +¢, and the
particle velocity jump is related to the stress jump. If the stress is continuous at the interface
(the case of zero stress jump), then so is the particle velocity, but no restriction is placed on

X (t). Two conditions are provided in both cases.

elastic-plastic plastic-elastic
¢

slow

super-fast super-fast

o=Y

X

Frure 2. Interface conditions for the six ranges of X. Regions 4, C, E open, and B, D, F closed.

Although initial conditions (or equivalent boundary conditions) provide one algebraic
relation between the wave functions in each region, their influence domains in the (x, #)
plane will not always extend to the interface path on both sides. For example, if an elastic-
plastic interface moves faster than a plastic wave, then the initial plastic wave following the
interface never overtakes and so does not affect the interaction. In this case a following
plastic wave is created and left behind by the interaction, thus introducing a new plastic
wave function not directly related to the initial conditions in the plastic region. This is the
situation when the interface path lies in region E or F'in the (x, ¢) diagram (figure 2) ; that is,
its velocity is bounded by the respective limits. (The various regions in the figure are defined
below—see equation (3-7) et seq.) Similarly, for a plastic-elastic interface moving faster
than an elastic wave, a path in region 4, initial conditions in the elastic region do not
directly determine the following elastic wave created by the interaction. In these situations
initial conditions provide only one relation between wave functions interacting at the inter-
face. On the other hand, if an elastic-plastic interface moves faster than an elastic wave, a
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path in region F, there can be no reflected wave on the elastic side, which offsets the loss of
aninitial condition described above. Similarly, if a plastic-elastic interface moves faster than
a plastic wave, a path in region B or 4, there can be no reflected wave on the plastic side,
while the initial condition is lost only if the path lies in region 4.

A summary of the number of relations provided by the conservation of mass and momen-
tum, and initial conditions, and the number of interacting wave functions, is most easily
presented by reference to interface paths in each of the regions 4 to I shown in figure 2.
In region B there are four conditions, which are sufficient to determine the three interacting
wave functions and the interface path, so no further condition is required or admissable. In
regions 4 and F there are three conditions and three interacting wave functions, so one
further condition is needed for a complete solution. In region E there are three conditions
and four wave functions, so two further conditions are needed. In regions C and D there are
four conditions and four wave functions, so one further condition is needed. The additional
conditions follow from the change of state taking place at the interface, which must be
consistent with the elastic-plastic model. These are now derived and shown to be precisely
the required number in each of the different situations summarized above.

It is supposed that the plastic region is governed by the loading stress-strain path YZM
in figure 1, with the current interface state represented by a typical point Z. At a continuous
interface the adjacent elastic element must then unload along ZZ'. The alternative case of
reverse plastic yielding, M'Z"Y’, and typical elastic reloading, Z'Z, is governed by the same
analysis if appropriate changes in sign are made to describe the reverse sense of the stress
variation. Suffixes e and p are used to denote the evaluation of quantities on the elastic and
plastic sides of the interface. At an elastic-plastic interface, the particle immediately on the
elastic side is about to become plastic, and the stress there must be at the current yield stress

for that particle, that is, (e-pi): a[X(8), f] = Y[X()]. (51)

Y (x) denotes the yield stress distribution (in the loading or reverse sense as appropriate)
which is known in the elastic region from the previous plastic history, and is just the current
stress in the plastic region by definition. There is no corresponding condition at a plastic-
elastic interface where the particle changes from the plastic state, since the current plastic
stress defines the yield stress.

In each case of a stress discontinuity at the interface, the above conditions are precisely
the required number. If the interface is elastic-plastic it must propagate with speed ¢,, so the
four interacting wave functions are determined by the two initial conditions, the particle
velocity-stress jump relation, and (3-1). If it is plastic-elastic it must propagate with speed
¢y, when there is no reflected wave on the plastic side, so the absence of the additional yield
requirement (3-1) is balanced by the loss of one wave function. Some appropriate solutions
are investigated in appendix A with regard to the later consideration of validity.

Returning to the case of continuous interfaces it is assumed that initial (or boundary)
stress distributions are continuous, including the yield stress distribution Y(x), and further
that they are sufficiently differentiable except at a finite number of points where right- and
left-hand derivatives exist. The existence of right- and left-hand derivatives allow various
conditions to be expressed compactly, but for most of the conclusions it will be seen to be an
unnecessary restriction. Stress discontinuities are easily treated separately in view of their
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simple predetermined motion, and in particular, it is shown that they cannot be created by
the interaction of initially continuous waves. The stress at a particle crossing a continuous
elastic-plastic interface increases continuously through the current yield value for yielding
in the positive sense, that is, the stress does not exceed the yield stress prior to crossing and
does not unload immediately afterwards. This implies that necessarily

(e—p-i): (%%) =0, (%%)p =0, 2)

with the opposite inequalities for reverse yielding. If the strict equalities hold, the later
analysis of validity hinges on higher derivatives, but the above are sufficient for present
purposes. The stress at a particle crossing a continuous plastic-elastic interface is previously
increasing for positive yielding and then unloads on becoming elastic, so that necessarily

. ar\ do .
(p—e—i): (ﬁ) <0, (Tt)p > 0; (3-3)

the inequalities are reversed for reverse yielding. It will now be shown that continuity of
stress and particle velocity across the interface imply a dependence between (do/dt), and
(do|dt),, and compatibility of the inequalities in (3:2) and (3-3) lead to the additional
conditions. The analysis is the same as that given by Lee (1953) for interfaces in a simple
tension system, but is presented for completeness.

Continuity of ¢ and v across the interface implies

do . (Jo do - (0
(%) ().~ () + (71:);
7 . (v ' . (v
() ¥ ()~ (@), 4 (5)

Using the equation of motion (2-4) to relate dv/df and do/dx on each side, then combining
the above to eliminate do/dx, shows that

do ) w o do 5o )
(E)CJF'OOX (a)e~(7t)p+ﬂ0X (3—x>p (35)

By the definitions of strain and particle velocity, (2:1) and (2-11), dv/dx can be replaced by
— de/dt, which in turn is related to do/dt on each side by the respective stress-strain relations
and wave speed definitions (2-7), so that (3-5) finally becomes

(%) G~ 0=3) (), (=0

(A similar result is obtained in the spherically symmetric system, together with the sub-
sequent conclusions, and will be published separately.)

Compatibility of the inequality pairs (3-2) and (3-3) with (3-6) isnow seen to depend on the
magnitude of X in comparison with ¢, and ¢, that is, on the signs of the two factors containing
X, and in certain cases the only possibility is that the equality signs hold in (3-2), (3-3). This
suggests a natural division into six types of interface, three in each class, which are listed
below with descriptive titles and labels, and summarized for easy reference in figure 2. Tt is

(3-4)
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convenient to make the elastic region x < X(¢), and the plastic region x > X(¢), so that the
elastic-plastic and plastic-elastic classes are distinguished simply by sign of X.

The complete sets of interface conditions for each type, as given by (3-1) to (3-3), (3:6),
are as follows: '

Type A: X > ¢,, super-fast plastic-elastic interface

().,

p

Type B: ¢, > X > ¢, fast plastic-elastic interface
do do
(7). <o (ﬁ)p =0 (38)

Type C: ¢, > X > 0, slow plastic-elastic interface

(%‘g) - (g‘;) —o. (3-9)

P

Type D: 0 = X = —¢,, slow clastic-plastic interface
do do\ o,
g, = Y, (7};‘)6 = 0, (E)p = 0. (3 ]0)
Type E: —¢, > X > —¢,, fast elastic-plastic interface
do do
o — 7, (71‘) - (%)p —o. (3:11)
Type F: —¢, = X, super-fast elastic-plastic interface
do do
—c (7;) =0, (‘éi)p = 0. (312)

The inclusion of the end-points of the velocity ranges, X = 0, +¢;, 4-¢, in particular
categories is chosen so that the stated conditions have no exceptions.

The additional interface condition provided by the last continuity argument is the
vanishing of (do/dt), in types 4, C, and E. The simultaneous vanishing of (do/dt), follows
automatically and is not a further condition. In the present geometry this is equivalent to
the condition that the rate of plastic work vanishes at the interface, and holds only at two
of the three types of plastic-elastic interface, and also at one type of elastic-plastic interface.
This condition has been postulated by Hopkins (1960), in the case of spherical wave propa-
gation, for all (in our terminology), plastic-elastic interfaces, irrespective of speed. As
mentioned earlier, the above analysis extends to the spherical problem, and leads to the
same division of interface conditions into six types and the corresponding conclusions for the
rate of plastic work vanishing. The inequalities deduced for types B, D, and F are part of the
subsequent test of validity, and do not serve in the determination of the solution. Thus the
elastic-plastic model requires no further restriction for type B, provides one condition for
types 4, C, D, and F, and two conditions for type E. These are precisely the requirements in
each of the different situations summarized earlier.

Two of the types of interface described above, 4 and F, move faster than an elastic wave,
while it has been shown that all stress disturbances, or signals, propagate with either the
plastic or elastic wave speed. The occurrence of a super-fast interface can be shown by a
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510 L. W. MORLAND AND A. D. COX

simple example, which both illustrates the mechanism and makes clear the lack of conflict.
Consider a simple elastic loading wave travelling through a region of uniform yield stress,
necessarily exceeding the maximum stress carried by the wave, but approaching a region
in which the yield stress decreases continuously in the direction of propagation, falling to a
level below the maximum stress in the wave. Figure 3a depicts the wave and yield stress
profiles at an instant #, when the wave first raises the stress to the yield level, at some particle
x,. As the wave proceeds, particles ahead of x, are successively raised to their respective

Y(x)-~_ .

F1cure 3 (a). Initial elastic stress wave profile —, and yield stress distribution ---.

B plastic

elastic

Ficure 3(b). Characteristics diagram.

yield stress and continue to be loaded, so that an clastic-plastic interface travels forward
from x,. Its path OA, drawn straight for clarity, is shown in a schematic characteristics
diagram (figure 35) which includes also a second interface path OB in view of the elastic
region behind the wave—a multi-interface interaction. Now the slope of OA is governed by
the time delay beyond ¢, for each particle x, > x,, to reach its yield stress, which may occur
in as short a time as desired if the yield stress gradient is sufficiently great in comparison with
the wave profile gradient. Thus the slope of OA may take any positive value, implying no
restriction on the interface speed. In the limit, if the wave and yield stress profiles coincide
in some finite region, yield occurs instantaneously over this region so that OA has zero
slope, corresponding to an infinite interface speed. The super-fast interface here is the direct
consequence of the particular non-uniform yield stress, a material non-homogeneity arising
from previous plastic deformation, which causes the change of state at each particle inde-
pendently; no stress disturbances are required to signal the change of state to successive
interface particles.

As an interaction proceeds, the waves currently incident on the interface stem from
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increasingly distant parts of the initial wave profiles, and in general the type of interaction,
as defined above, will be changing. Furthermore, the resulting wave patterns outside the
neighbourhood of the interface may themselves lead to changes of state and initiate new
interactions. If no multi-interface interaction develops, a given interaction may be treated
in isolation from the others in the sense that a solution may be obtained, and tested for
validity, in some finite neighbourhood of a chosen initial point on the interface path. In this
way the interaction may be followed step by step, but conditions for the existence of a unique
solution have, in general, only local validity. The analytic solutions for the interface path and
stress wave profiles are given by implicit algebraic relations in terms of the initial wave
functions. An analysis of validity relies on expansions about the current interface point. In
principle such local expansions should extend to the non-uniform wave velocity case,
provided that no shocks form in the neighbourhood.

It will become clear as solutions for each of the six types of interface are obtained, that they
cover all possible patterns of waves interacting with a single interface. This is most easily
seen from the characteristics diagrams. The only restriction that may be placed on the
initial stress wave profiles in both regions, and on the yield stress distribution in the elastic
region, is that they are consistent with the elastic-plastic model. The last two observations
indicate that any valid pattern of initial waves itself represent a solution of one of the six
types of interaction, and further that any such solution represents a valid set of initial
conditions. Thus any change of type of solution which arises in an overall interaction is
covered by the analysis of the general initial value problem.

The initial meeting interaction between oncoming plastic (here loading) and elastic
waves—a case of single initial waves in both regions—is of basic interest, and we choose to
treat this first in §§4 and 5. Construction of formal solutions and testing for their validity
involves fewer functions than in the general interaction, though the methods are the same,
and the essential features are perhaps more easily seen. Itisshown that a valid initial solution
can break down after some time interval, and the continuation of the interaction again
requires formal consideration of the six types of solution under the new initial conditions.
For even quite simple initial conditions, an interaction solution must be constructed step by
step in this way.

Solutions for the different types of general initial conditions are obtained in §6 by
straightforward extensions of those for the meeting interaction. The overtaking interaction,
which also involves only single elastic and plastic incident waves, is a particular case.

4. INITIAL INTERACTION OF TWO MEETING WAVES

The interaction is supposed to start at { = 0, with the two oncoming wave fronts making
first contact at x = 0. Initially there is a single wave travelling in the positive x-direction in
the elastic region x < 0, and a single wave travelling in the negative direction in the plastic
region x > 0. Thus, prior to the interaction, the stress distribution is described by

<o =g GEe ) o
o a(x,t)=§gz)+mt) E0<‘x‘2)_61t)} (4-2)
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Here the initial wave functions G, F, defined in x < 0, x > 0 respectively, are continuous
and bounded, and for ¢ < 0 the stress in the region between the oncoming waves has the
uniform value G(0) = F(0). At ¢ = 0, there is a continuous yield stress distribution Y (x) in
the elastic region x¥ < 0, and since ¥ = 0 is the front of the oncoming plastic wave and hence

just at yield, Y(0) = F (0) =G(0). (4-3)

Without loss of generality it is assumed that the plastic wave is loading, following some
section of the yield path YZM in figure 1, and then the elastic wave carries stresses below the

yield level; it is not necessary that the initial elastic wave is strictly unloading at the front.

Thus F@)=0 (x>0

Gl < T(¥) (< 0)3) ()

where the prime denotes differentiation with respect to argument, and appropriate right-
and left-hand derivatives are assumed to exist. Further, since the region x < 0 has, during
t < 0, been subjected to an elastic wave carrying a stress Y (0),

Y(x) = Y(0) (x<0), (4:5)

which is the only explicit limitation that may be placed on Y (x). Itis assumed for simplicity
that the initial stress profiles extend to infinity, since more remote disturbances of a different
nature require a finite time to reach the interaction region and influence the solution. Once
this occurs the situation is treated as a new interaction. The initial stress wave profiles are
shown in figure 4, there with the elastic wave totally unloading.

F(x)

Y(0) 0 x
,“/Z
G(x)

Ficure 4. Initial stress wave profiles for meeting interaction.

Once the interaction has started there will, in general, be waves in the two directions in
both elastic and plastic regions, which are separated by an interface at x = X(¢). Thus the
general stress distribution for ¢ = 0 is described by

o(x,t) = g(x—cot) +h(x+eot) (v < X(2)), (4-6)
75, 8) = elx—cyt) S (rbert) (x> X)), (47)

In the particular situations when only a single wave exists in one of the regions, the un-
required wave function is set to zero or a constant as appropriate. The above notation for
waves in the respective directions in the elastic and plastic regions will be adopted consis-
tently throughout the text. Thus G, g represent waves travelling in the positive direction in
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the elastic region, and H, & waves in the negative direction in the elastic region. Similarly
E, ¢ for the positive direction, and F, f for the negative direction, in the plastic region. The
significance of each term is then immediately apparent, and subsequently allows omission
of arguments without ambiguity, which results in considerably more compact expressions.
Furthermore, prescribed initial wave functions, and yield stress distribution, are denoted
by capitals, while the lower case symbols denote wave functions to be determined in the
interaction solution. The exception to this rule is the interface path, x = X(¢), which is also
part of the solution, but this should not be misleading.

Formal solutions to the initial-value problem defined by (4-1) to (4-5) may be obtained
for each of the six possible types of interface, 4 to F, described in § 3. Itis shown in appendix A
that, for general continuous initial stress distributions, no valid solution exists in which a
stress discontinuity develops at the interface, or elsewhere. That is, stress discontinuities
can arise only by prescription in the initial (boundary) conditions. Thus only the six types
of continuous interface need be considered.t Each solution starts with an assumed range
for the interface velocity, X (£), and the application of interface conditions appropriate to
that type. Hence a valid solution must, in the first place, lead to an interface velocity lying
at all times within the assumed range. Secondly, the stress distributions in the elastic and
plastic regions must be consistent with the elastic-plastic model. That is, stress must not
exceed yield anywhere in the elastic region, and must nowhere unload in the plastic region.
These aspects of the solutions are deferred until §5, where existence and uniqueness are
discussed. It may be noted that, in view of the implicit nature of the solutions, explicit
conclusions are possible only (in general) within some finite distance of the interface and
during some finite time interval. In the following five subsections, solutions of types C, B,
D, E and F are derived, anticipating that type 4 cannot be initiated by the present initial
meeting waves. This is shown in § 6, where solutions to a general interaction are derived, and
in particular it is seen that a valid solution of type 4 requires more general initial conditions.

4-1. Solution for a slow plastic-elastic interface, type C

In this solution the interface velocity lies in the range 0 < X < ¢;, so that both initial
waves reach the interface and both reflected waves exist. This case is illustrated by the
characteristics diagram (figure 5) in which (and in subsequent diagrams) the interface path,
OP, is shown as a straight (dashed) line for clarity. The reflected elastic wave A(x+c¢,t)
exists only in x > —¢,t, but in order to use the representation (4+6) for all x <X (), t=0,
it is convenient to set 4(x) = 0 for x < 0, and similarly set ¢(x) = 0 for x > 0. Applying the
initial conditions (4-1), (4-2), at t = 0, to the representations (4-6), (4:7), shows that

() =Gl (x=<0); fl&) —=F) (x>0). (4111)

Thus the stress distribution for ¢ > 0 becomes
7(x,t) = G(x—cot) +h(x+cot) (v < X(2)), (4-1-2)
7(x,t) = e(x—c, ) +F(x4e2) (x> X(2)). (4-1-3)

t A solution of type B to a meeting interaction is given in [M], but validity and alternative solutions are

not discussed.

66 Vou. 264. A.
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514 L. W. MORLAND AND A. D. COX
Continuity of stress at the interface x = X(¢) now gives
t=0: G[X(t) —cot] +A[X(E) +cot] = e[ X(t) — e, t] +FLX(£) 4-¢, t]. (4-1-4)

In order to apply continuity of particle velocity at the interface, expressions for » must be
obtained at a generic point P on the interface path (figure 5), is approached from both
elastic and plastic sides. In view of the continuity both limits may be denoted by vp. Further,
quantities evaluated at labelled points in the (x,¢) diagram will be denoted by the appro-
priate capital suffix, and in particular, for wave functions, the respective argument is

~ ¢
/V e(agclt)
R (x+cot) P
J]
N
- /
A_"B 0 C\ D x
e A
G(x-cot) F(eregt)

Ficure 5. Characteristics diagram for meeting interaction with slow plastic-elastic
interface, type C; interface path shown ——-.

evaluated at the point. Thus Gy is written for G(xp—¢ytp), etc. Applying the characteristic
relation (2-12) along the positive characteristic JP in the elastic region, on which the wave
function G is constant, shows that

Poto(Ve—05) = hy—hp, (4-1-5)
while evaluating (2-13) along the particle path O] gives
PoCo(V3—00) = G;—Go—ly+h. (4-1-6)
Adding (4-1-5) and (4-1-6), and again using G; = Gy, gives the elastic relation?
PoCo(Vp—10) = Gp—Go—hp+ k. (4-1-7)

Similarly, following the characteristic OU, along which ¢ is constant, and the particle path
UP in the plastic region, gives also

pocl(UP’—yo) == ep*—eO“—Fp“i—Fo. (4'1'8)

Eliminating v, between (4-1-7) and (4-1-8), and recalling (4-3), shows that
e((Go—Yo—hp) = coep+ Yo —Fy), (4-1-9)

where Y, = Y(0), is the uniform stress between the initial oncoming waves.

t The derivation in [M] was based solely on a particle path integration to P, and ignored the fact that this
path lies in the plastic region; the correct result is obtained.
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Combining (4-1-4) and (4-1+9) gives for ¢ > 0,
2¢,

/Z[X()Jrvoﬂ—'**{yo CLX() —atly+, 7 LX) +at] = Toh, - (4:1:10)

eLX(0) —erf] = 2 (Fo = GLXW) —eotl}+2 XD +al]~To). (4111)
Since 0 < X(¢) < ¢ytfort > 0, these are expressions for /(x) in ¥ > 0, and ¢(x) in ¥ < 0, once
X(t) is determlned. More specifically, they define the wave functions # and e within the
respective domains of the characteristics ‘reflected’ from the interface up to the current
time . That s, if Pis the current point on the interface path, up to the limiting characteristics
PK and PV respectively, in figure 5.

It remains to satisfy the change of state conditions at the interface appropriate to type C,
namely (3-9). There is just the single condition, the vanishing of do/dt on either side, which is
sufficient to determine X(¢) and complete the solution. Differentiating (4-1-3) and applying
(3:9) on the plastic side, shows that for ¢ > 0,

¢'[X(t)—e t]—F'[X(t)+¢t] = 0. (4:1-12)
Now differentiating (4-1-11) and eliminating ¢’, noting the strict inequalities X < ¢, < ¢,
it follows that for ¢ = 0, G'[X(t) —cot] = F'[X(t) +¢, ] (4-1-13)

This is an implicit algebraic equation for X(¢) in terms of the given initial functions G(x),
F(x). Since X(0) = 0, (4-1-13) requires that G’(0) = F’(0), which is a severe restriction, so
that solutions of type C are not likely to occur very often. Differentiating (4-1-13) gives an
expression for the interface velocity,

{G'[X(0) — o] —F'[X() +e, 1 X (8) = 60X () — o]+, F'[X(O) +y ], (4114)
which is also a first-order differential equation for X(¢), with an initial condition X(0) =
Conditions for the validity of this solution are determined in §5-1.

4-2. Solution for a fast plastic-elastic interface, type B

Here the interface velocity lies in the range ¢; < < X < ¢y, and the corresponding charac-
teristics diagram is shown in figure 6. Since X = ¢,, there are no reflected plastic waves (or
positive characteristics leaving the interface path in the plastic region), which means that
¢(x—c,t) = 0 for x < ¢, ¢, and hence everywhere, in the representation (4-7). The situation
when the interface overtakes such plastic waves travelling in the positive direction is treated
in §6. Now the initial conditions (4-1-1) and the stress continuity relation (4-1-4) and particle
velocity continuity relation (4-1-9), derived for type C, are again obtained with ¢(x) = 0.
Thus the resulting expression for [ X(¢) +¢,t] is again (4-1-10), while (4-1-11) becomes an
implicit equation for X(¢) in ¢ > 0,

20{Yo —G[X(¢) —cot]} = (co—ey) F[X(2) + 18] — o} (4-2-1)
Using (4-2-1) allows (4-1-10) to be expressed in the alternative forms

HXW) +af] = 20 o~ GLX() —ao 1]},

_ ﬁo_iﬁ,{p[X (6)+-¢,6]— T}, (4-2-2)

66-2
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516 L. W. MORLAND AND A.D. COX

either of which determines A(x+cyt) up to the limiting reflected characteristic PK in
figure 6, if P is the current point on the interface path. A complete solution is now deter-
mined, consistent with the absence of further change of state conditions shown by (3-8).

The interface path equation (4:2-1) is trivally satisfied at ¢ = 0, recalling (4-3) and
X(0) = 0. Differentiating gives an expression for the interface velocity,

{20, G'[X(8) —¢ot] + (o —0y) F'[X(2) +e, X (8)
= 0{20,G'[X () —6ot] — (co—0)) F'[X(2) +-0y 8]} (42:3)

Conditions for the validity of this solution are determined in §5-2.

NN
G (x-cot) F(x+c,t)

Ficure 6. Characteristics diagram for meeting interaction with fast plastic-elastic
interface, type B; interface path shown ——-.

Ficure 7. Characteristics diagram for meeting interaction with slow elastic-plastic
interface, type D; interface path shown ———.

4-3. Solution for a slow elastic-plastic interface, type D

Here the interface velocity lies in the range 0 = X = —¢,, and the corresponding charac-
teristics diagram is shown in figure 7. As for type C, both reflected waves, &(x+c¢,t),
e(x—¢,t), are present, and the initial and continuity conditions lead again to the expressions
(4-1-10) and (4-1-11). Now the single change of state condition, given by (3-10), is that the
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interface stress is equal to the yield stress at the particle. Thus, using the elastic representa-
tion (4-1-2), it follows that

GLX(8) —eot]+h[X(2) +¢ot] = Y[X ()], (4-3-1)
and substituting for % from (4-1-10), '
2 F[ X (8) + ¢, 8] — Yo} —26,{To — G[X(t) —cot]} = (co+¢) {Y[X ()] — Yo}  (4-3-2)
This implicit equation for X(t), trivially satisfied at ¢ = 0, completes the solution. Differen-
tiating gives an expression for the interface velocity,
{260 B[ X(8) ¢, 1] 420, G'[X(£) — e t] — (co+e1) Y'[X(£)]} X (0)
= — 2000, {F'[X(t) +¢,t] — G [X(¢) —cot]}.  (43:3)

Conditions for the validity of this solution are determined in §5-3.

4-4. Solution for a fast elastic-plastic interface, type E

Here the interface velocity lies in the range —¢; > X > —¢,, and the corresponding
characteristics diagram is shown in figure 8. It is immediately clear that the initial plastic
wave F(x+¢,t) is not incident on the interface and that a new plastic wave f(x+¢,?) is
continuously created by the interaction and follows behind the interface at slower speed.

X

G (-ct) Flxtct)

Frcure 8. Characteristics diagram for meeting interaction with fast elastic-plastic
interface, type E; interface path shown ——-,

There is a reflected elastic wave 2(x+¢,¢) and reflected plastic wave e(x —¢,¢). Again initial
and continuity conditions lead to the expressions (4-1-10) and (4-1-11), here with F replaced
by the unknown wave function f. Two further equations are given by the interface condi-
tions (3-11), which require that

G[X(8) —cot]| +h[X(2) +cot] = Y[X(2)], (4-4-1)
e' [ X(t) —e 8] —f'[X(2) +¢ t] = 0. (4-4-2)

Now differentiating (4-1-10) and (4-1-11) and using (4-4-2) shows that
S[X@) +et] =€ [X(8) —e t] = W [X(E) +cpt] = G'[X(£) —cpt], (4-4-3)
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518 L. W. MORLAND AND A. D. COX
while differentiating (4-4-1) and eliminating 4’ by (4-4-3) implies that
2G'[X(t) —cyt] = Y'[X()]. (4-4-4)

This is an implicit equation for X(¢), and can be satisfied initially only if 2G’(0) = Y'(0),
which restriction will make solutions of type £ uncommon. Differentiating (4-4-4) gives an
expression for the interface velocity,

{2G"[X () —cot] = Y"[X()]} X(t) = 26, G"[X(£) —cot]- (4+4-5)

Conditions for the validity of this solution are determined in §5-4.

4-5. Solution for a super-fast elastic-plastic interface, type I

Here the interface velocity lies in the range X < —¢,, and the corresponding charac-
teristics diagram is shown in figure 9. Again the initial plastic wave F(x+ ¢, t) is not incident
on the interface and the new following wave f (x4 ¢, ¢) is created, but now the reflected elastic
wave h(x+c,t) is absent. Thus (4-1-10) and (4-1-11) apply with 4 = 0 and F replaced by f,

and the further interface condition (3-12) gives the implicit equation for X(t),
CLX(t)—cyt] = Y[X(1)], (4-5:1)

trivially satisfied at O. Differentiating gives the interface velocity expression

(GTX() —cot] = VIXOT X (1) = e G'LX(8) ~cot]. (4:5:2)

Conditions for the validity of this solution are determined in §5-5.

t
e(x-ct)
flxte,t) 7
\Y
SN\ T
7 NN
G(x-cot) F(x+c,t)

Ficure 9. Characteristics diagram for meeting interaction with super-fast elastic-plastic
interface, type F; interface path shown ——-.

5. VALIDITY AND UNIQUENESS OF THE INITIAL INTERACTION SOLUTION

The formal solutions obtained in § 4, assuming in turn interfaces of types C, B, D, E and F,
will now be examined for validity. That is, the interface velocity must be in the assumed
range, the elastic stress distribution must not exceed yield, and the plastic stress distribution
must not be unloading. In view of the implicit dependence of the wave functions on the
interface path, the explicit behaviour of the elastic and plastic stress distributions in terms
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of arbitrary initial functions may be determined, in general, only by series expansions of the
solution about points on the interface path. The validity conditions so deduced apply only
to some finite open strip in the (, ¢) plane which contains the interface path. An exception
is the type C solution, for which conditions ensuring global validity are found. If the elastic
or plastic stress distribution violates the validity requirements outside the strip, then a new
interaction is initiated which may be treated separately. After a time the newly created
waves may reach the original interface and so replace the initially prescribed profiles. In
factitis clear that the local solution is governed by waves currently incident on the interface,
but the term ‘initial waves’ is convenient.

Behaviour of the solutions in the neighbourhood of a generic point on the interface path,
labelled P in figures 5 to 9, involve derivatives of the initial wave functions and yield stress
distribution evaluated at P. Itis assumed that the solution is (locally) valid until that instant
and the next time interval is considered. This is governed by disturbances propagating along
subsequent incident characteristics on the two sides, so the changes are described respec-
tively by the left- and right-hand derivatives of the elastic and plastic wave functions
G(x—cyt), F(x+¢;t). Thus the results obtained apply if derivatives are interpreted as the
appropriate left- or right-hand limit. The existence of these limits is seen to be unduly
restrictive but allows compact expressions for validity conditions, and in any case is a weak
restriction from a physical standpoint. By considering a sequence of points P on the interface
path separated by short time intervals, the solution may be investigated in some finite strip
containing the interface path. In particular, the behaviour of the solution in the first
interval of time, which starts with a valid stress distribution defined by the initial waves, is
determined by derivatives evaluated at the initial point, labelled O.

For each of the five formal solutions, conditions necessary for local validity are obtained
in terms of the two initial wave functions and the yield stress distribution. The three sets of
conditions are found to be non-overlapping, so that only one of the solutions is possible for
given initial functions, but further, there are initial functions which do not satisfy any of the
sets, when no single-interface solution is valid. These conclusions apply to some initial time
interval. As the interaction proceeds through successive time intervals the solution may
change in type, and waves initiated in earlier stages may be currently incident on the inter-
face. This corresponds to the general initial conditions, involving incident wave functions
H(x+cyt), E(x—ct), treated in §6, when an interface of type 4 also is shown to occur.

The above conditions specifically involve the first non-vanishing derivatives of the initial
wave functions and yield stress distribution evaluated at the point P on the interface path,
and itis useful to introduce a short notation. More precisely, the value of the first derivative,
for example Fp, is ignored, and M is the least integer > 2 for which the Mth derivative
FO) & . The suffix P will also be dropped when the expansion point is clear. A similar
notation, G®, Y®, is applied to the other functions, where M, N, § may take different values,
but in the case of equal values the same letter is used.

5-1. Validity conditions for the solution of type C
The elastic and plastic stress distributions are given by (4-1-2), (4-1-10), and (4-1-3),
(4-1-11), respectively, and the interface path by (4-1-13). The interface velocity, given by
(4-1-14), must satisfy 0 < X < ¢,.
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520 L. W. MORLAND AND A. D. COX

Consider first the plastic region x > X(¢) in which the stress must nowhere unload.
Referring to figure 5, this condition is automatically satisfied in the domain COZ containing
only the initial loading wave, leaving the domain bounded by OP and the first reflected
characteristic OZ to examine. At a typical point V, differentiating (4-1-3) with respect to ¢,

1 /oo , ,
: (%)V = ot F, (5-1-1)
By the characteristic relations and (4:1:12), Fy = FY,, ¢y = ep = Fy, = F{, so that
1 /0o , ,
: (?i)v — Fy—F, (51-2)

Thus (do/dt)y = 0 as VP if Fj, = F(, as D—C, equivalent to
Fo=Fp>=0, F>o0. (5°1-3)

If g = 0, all m > 2, then the ‘no unloading’ criterion is still satisfied. For a valid solution
in COP it is necessary and sufficient that

Fan >0 (5-1-4)

at every point on OP, or that all derivatives from the second vanish. This is a global result,
noting that the value of M can change between points on OP. In particular, for a valid
plastic solution in some neighbourhood of the interface during an initial time interval,
defined by a region CGOP as P— O, the condition is that Ff; > 0 as P— O, equivalent to
(5-1-4) applied at O.

It is convenient to consider next the interface velocity X. Rearranging (4:1-14) shows that

(6q—X)G" =—(¢c;,+X) F" (5°15)
at each point P on the interface path. By (5:1-3) and the inequality 0 < X < ¢, it follows
that G" < 0. (5-1-6)

Excluding for the moment the case when /" and G” vanish together, (5-1-5) gives the

expressions v G o F" v (co—¢y) G"+2¢, F"
X G” — F// 3 1 G” — F” ’

(5:1+7)

which, in association with (5-1-3) and (5-1-6), show that the necessary and sufficient condi-
ion for 0 < X < ¢, i

tionfor O <= 4 < a1 —(cg—e,) G" < 26, F" < —2,G". (51-8)

If, however, ", G” vanish together at a point on the interface path, repeated differentia-
tion of (4-1-13) until the first non-vanishing derivative of F or G at that points occurs, shows
that ) )

@ (6g—X)m 1 (—1)m=1 Gm = (¢, + X )m=1 Fm, (5:1-9)
The special linear profiles case with, by (4-1-13), G’ = F’ and all higher derivatives vanish-
ing, is relevant also to the other types of solution, and is examined separately in appendix B.
For a compatible X both G™ and F™ must be non-zero, so that m = M = N, and recalling

(5-1-3), FOnS 0, (—1)M-1 G0 o, (5+1-10)
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Further, it is necessary and sufficient for 0 < X < ¢, that
h_atd % (5:1-11)

60 60‘_‘X 60_—61,
which, by (5:1-9) and (5-1-10) is equivalent to
(cg—0cy )M~ (—=1)M-1 G < (2¢))M~1 FAD < (2¢)M~1 (—1)M-1 GO, (5-1-12)

The previous condition (5-1-8) is just the case M = 2, but is given as an explicit example
since it represents the most common situation in practice. In particular, (5-1-12), or the
special modification discussed below, must hold at O.

Suppose now that the formal solution gives instantaneously an interface velocity at one
end of the range, here X = 0 or X = ¢,. Both these limiting cases are excluded from the
range, but the solution will apply to some subsequent time interval provided that the first
non-vanishing derivative of X at that instant has the appropriate sign. Validity depends
further on the stress distributions. The left-hand limit of the range, X = 0, is obtained if
equality between the latter two expressions in (5:1-12) occurs, and the right-hand limit,
X = ¢, if equality between the first two expressions. The following notation allows more
compact expression of the general condition (5-1-12), and of the end-point conditions.

Define B (my = (260)"" (— 1)1 G — (20,)m1 ), )
By = (6t (— 1)L G (26,)m=1 o 113
then (5-1-12) becomes C(M)y>0, Z(M)<DO. (5:1-14)
The interface velocity limits are given by
X =0=%(MY=0, X=c<B(M)=0. (5:1-15)

Conditions governing the interface acceleration at end-points of the velocity range are
analogous for each type of solution, and are determined in appendix C after reduction to
common form. In this solution

X =0=8(M)Y=0; (X)0=0<=8(M+rY=0 (r=1,...,m—1),
()

(XY™ > 0<=>E(M+m) > 0, (51-16)
X=¢=B(My=0; (X)0=0=B(M+ry=0 (r=1,..,m—1),
(X)) < 0<>B(M+m) < 0. (5:1-17)

The elastic region x < X(¢) splits naturally into the two domains AON and NOP, in
figure 5. The stress in AON is defined by the initial elastic wave G(x—c,t), where by
(4:113) and (4-4), G’ = F’ > 0, and further, if G; = 0, (5:1-10) applies at O. Thus the wave
front is strictly unloading, and in view of (4-5), there is some finite neighbourhood of O,
bounded by AO and ON, in which G(x—c¢,t) < Y(x) as required. If the elastic wave is
totally unloading then this result is global, holding within the entire domain AON defined
by the initial wave. The requirement o(x,#) < Y(x) in the domain NOP must now be
considered. In fact the conditions for validity already obtained are shown to imply do/d¢t < 0
in some finite strip adjacent to the interface path. This is a stronger condition, since for
particles in x << 0 the stress has been shown not to exceed yield on the limiting characteristic

67 Vor. 264. A.
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ON (at least on some section adjacent to O), while in x = 0 the particles are just at yield on
the interface path OP.
At a typical point K, by (4:1-2) and the characteristic relations,

1 /do , y .1-

Further, the vanishing of (do/dt), on the interface, (3-9), shows that

B = G, (51-19)
so finally cl(fg‘g) — Gy—Gh. (5-1-20)
0 K

Thus if (5:1:6) holds on OP, say, then (do/dt)x < 0 for all points K up to the limiting
characteristic BP (within NOP) which is a global result. More particularly, (5:1-10) applied

at O implies (5:1-6) holds over an adjacent section and ensures validity in a finite neigh-
bourhood of O.
‘The above results are summarized in §5-6 as part of the uniqueness proof.

5:2. Validity conditions for the solution of type B

The elastic and plastic stress distributions are given by (4:1-2), (4:2:2) and (4-1-3) with
e(x) = 0, respectively. The interface path and velocity are given by (4-2-1) and (4-2-3), and
X must satisfy ¢, < X < ¢,
In the plastic region x > X(¢) the stress is defined solely by the initial plastic loading wave,
since there is no reflected wave, and the ‘no unloading’ condition is automatically satisfied.
The initial plastic loading condition (4-4) gives a further result

F'=0=FM=>0, (5-2-1)

A necessary condition on the elastic side of the interface is (do/d), < 0, by (3-8), and so

from (41-2), (4-2:2), ((Zo) _ 2 E—e) & _ (5-2-2)
t (co—¢1) (eo+X)

This implies that if X + ¢,, G' = 0. (5:2-3)

It is now convenient to consider the interface velocity. Setting X=¢ in (4-2-3), and

noting F = 0, implies G’ > 0, so that (5-2-3) holds for all X in the range ¢, < X < Co-
Rearranging (4-2-3) shows that

(X_Cl) {26,G" +(co—¢)) F'} = 2¢,(co—cy) (G'_F'),l

. 5:2:4

—X){26,G"+ (¢g—¢)) F'} = (§—e}) " J ( )

Thus, from the first relation, G'=F, =0, (5-2-5)
and further,

GC>F=>X>¢, X=¢=>GC=F, GC=F+0=X=q, (5:2-6)

From the second relation X < ¢, as required and

X=t=>F =0, G>F=0=X=q, (5:2-7)
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If G = F' = 0, X is not defined by (5-2-4), but repeated differentiation of (4-2-1) gives
26, (0= X)™ (— 1)1 G0 — (0, —e,) (e + Xym Fom, (52:8)
where G™ or F™ (or both) is the first non-vanishing derivative. At least one exists for G,
F’'4 0. Immediately X = N< M, (5-2-9)
thatis G® 0, F™ = 0; the sign of G™is determined later. For X < ¢,, N = M, and recalling
(5-2:1), Fon= 0, (—1)M-1Ga0 > 0, (5-2-10)
Further, X > ¢, implies X+63— > 20 (5-2-11)

co—X ~ Co—C1’
and it follows from (5-2-8), recalling the definition (5-1-13), that
BMY =0, X=c<B(M)=D0. (5-2-12)

Note that (5-2-5) and (5-2-12) allow G’ or (—1)M~1 G —c0 respectively, so that the exist-
ence of the (left-hand) derivative is not essential.

Before considering the further conditions required at the end-points X = ¢;, ¢,, the sign
of GMin the case F' = G’ = 0, X = ¢,, described by (5:2-9), is needed. With G’ = 0, (5-2-2)
does not show that ¢ is decreasing and it is necessary that the first non-vanishing derivative
on the elastic side is strictly negative. By (4-2-2), successive derivatives of # vanish with the
corresponding derivatives of G at an interface point, so that the first non-vanishing deriva-
tive of (4-1:2), on eliminating A", is

1 3NU) Cot0; (co—X\N
— === (—1 N—IG(N){I__(L_J(O_w—.) } 5:2:13
o () = (=D Py (5213)
Thus, since { } > 0, (—1)V-1G™ > 0. (5-2-14)

Conditions so far determined to ensure elastic unloading at the interface path, that is for
particles in x > 0, are G’ > F’ or (5-2:14) if F' = G' = 0, leaving the case F' = G’ 0, when
X =¢, and (do/dt),= 0. No simple expression analogous to (5:2:18) is obtained with
G’ 0. However, if this situation first occurs at P, say, it is sufficient to show that (do/dt) is
strictly negative ahead of P on the interface path and at K (as K—P) on the reflected
characteristic from P. Then by continuity, (do/dt) < 0 in a neighbourhood of P bounded
by PK and the subsequent interface path, and the yield stress is not exceeded ; it is assumed
that conditions on OP meet the validity requirement up to PK. This situation may occur at
O. The first condition is met if X increases from ¢, ahead of P, since then X > ¢, G’ > 0 in
(5-2-2), and this is an end-point requirement determined shortly. Now, with X = ¢, at P,
_% (%%)K G\ —G, (5-2-15)
which is positive as A— B, as required, in view of (5:2-14).

For particles in x << 0, the stress in the domain AON is defined by the initial wave, again
strictly unloading at the front by (5-2:5), (5-2-14), so yield is not exceeded near O. Then,
for the domain beyond ON, it is sufficient to show that (do/dt);, < 0 as L—O along NO.
This follows immediately by continuity if (do/dt)y, < 0, and if (do/dt), = 0 the above
argument with KP replaced by LO leads to (5-2:14) again, applied at O.

67-2


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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Finally, some examination of the limit situations X = ¢, or X = ¢, here permissible, is
required. We exclude general discussion of the particular cases X = ¢, and X = ¢,, since the
predetermined interface path allows explicit solutions, necessarily of type B. Particular
solutions of this form are obtained in appendix B in the special linear profiles case, and it is
assumed here that at least one F, G®= 0 (M, N = 2). Thus if X = ¢, instantaneously, a
continuing solution of type B requires X to increase, while if X = ¢, instantaneously, a
continuing solution requires X to decrease. The following conditions are derived in

appendix C, noting that all situations are covered by including non-zero first derivatives
as FO, G® (M, N = 1).

X=¢,<B(M)y=0; (X)0=0=B(M+ry=0 (r:I,...,m—l),l

: (5-2-186)

XM > 0<=>B(M~+m) > 0; J
X =M =0; (X)0=0=FVn=0 (r=1,..,M—N—1), 517
XM-N) < s FOD > (), J ( )

It follows from (5-2-1) that (5-2-17) is necessarily satisfied. The limit situation in (5-2-16)
arose in the type C solution, but the comparison and complete summary of conditions is
deferred until §5-6.

5:3. Validity conditions for the solution of type D

The elastic and plastic stress distributions are given by (4:1-2), (4-3-1) and (4-1-3),
(4-1-11) respectively. The interface path and velocity are given by (4-3-2) and (4-3-3), and X
must satisfy —¢, < X < 0.

In the plastic region x > X(¢) there is a valid stress distribution in the domain DOZ
(figure 7) defined by the initial plastic loading wave. The loading condition (3-10) must
be satisfied at each point P on the interface path. From (4-1-3) and (4-1-11),

30) 2, (cy—X) P

VT A) (PG = 0, 531
30 = ey =) oy
so it is necessary that F =G (5:3-2)

If F > G’ then (do/dt) > 0, butif I/ = G’, at P say, then to ensure loading in a neighbour-
hood of the interface as the interaction proceeds it is necessary and sufficient that F'—G’
becomes positive beyond P, and that (do/dt)y > 0 as V— P along the reflected characteristic
from P. From (4-1-11), Gp = F}, = ¢}, = Fp, whence

1 /oo , ,
L3), it o
2! v
with the consequent requirement
F' =G = FM >0, (5:3-4)

In particular, for validity in the initial time interval it is necessary that either F' > G, or
that (5-3-4) holds at O.

If F/ = G’ and X = 0 at P, then it is shown in appendix C that F'—G’ increasing and X
decreasing are equivalent, and the necessary and sufficient conditions are given in the
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interface velocity discussion. However, it is seen there that X = 0 does not necessarily follow
from F' = G’, and then it is possible only to obtain necessary conditions when F'—G’
increases. Consider a point M on the interface path at a small time interval d¢ beyond P,
then the leading term expansions about P give

Fy—Fp = (o, X)M-1Fg0 (51)M-1(M—1)!, |

Gu—Gp = (6—X)N" 1 (—=1)N1GW (§)¥1[(N—1) L

Thus since Fj = G}, and F& > 01it follows that Fy; > G if, and only if, M < N(X+ —¢,) or
M>N or M<N and X=—¢ = (—1)YG™> 0, (5:3-6)

M=N, X+—¢ = (c,+X)M1FO) > (;— X)M-1(_1)M-1G0D, (5:3:7)

The latter is trivially satisfied if (—1)™ G > 0. If (—1)#~1 G?) > 0, it is necessary that the

inequality holds when the L.h.s. takes its maximum value and the r.h.s. its minimum value
for —¢; < X <0, that is when X = 0. In terms of the definition (5:1:13) this condition

becomes (—1)M-1GM > 0 =F(M) < 0, (5-3-8)

and is not sufficient when X < 0. If the equality in (5:3+7) holds, then the first corresponding
strict inequality in the higher derivatives must have the same sign. The special case F’' = G’
and F™, G = 0 (m > 2) is treated in appendix B.

In the elastic region x < X(¢) all particles are just at yield on the interface path, and the
loading condition (3+10) must be satisfied at each point P. From (4:1-2), eliminating / and
Y in turn by (4:3-1) and (4:3:2),

(5°35)

1 (90) —X . 2, (¢, +X) .
=) =—= (26 -Y) = — 0l (F'—G), 539
o \ot) "o 2T T ey o )T e
which is non-negative by (5-3:2). It further implies that
2G' = Y, (5-3-10)

except perhaps if X = 0, but it will be shown that (5:3-10) is always necessary. A strict
loading condition from (5-3-9) depends on the value of X, but is clearly ensured if the strict
inequalities of both (5:3-2) and (5:3:10) apply. Again, if /' = G’ and X== 0, then by (5-39)
2G" =Y’, and a valid solution certainly requires that both F'—G’ and 2G’—Y" increase
from zero in the subsequent time interval. The former requirement has already been
treated. In addition it is necessary that Ygx—ox >0 as K—P along the reflected
characteristic.

Let xx = xp—dx, then eliminating /x = /p by (4-3-1) and retaining the two leading terms
in expansions about P shows that

Yi—og = (2G5 —Y3) 0x 429 (— 1)V LGV (0x) V[ N4 (—1)S Y (0x)5[S!.  (5-3-11)
Immediately the inequality (5-3:10) is confirmed for X = 0. If 2G;, = Y7 the alternative
requirements are

SN (CPTOS0, SxN= (a0
S=N=>(—1)"Y®=>0, (—1)¥1GM=>0, J
or (—1)NY®M = N(-1)¥GW > 0, 1

5-3:13
or 2V(—1)¥-1GM = (—1)¥-1Y® > o 1)
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In the domain AON containing only the initial elastic wave, the stress does not exceed
yield near O if G > 0, or if G; =0 and (—1)¥1G¢" > 0, since Y < 0. If G; =0 and
(—1)¥-1GP < 0, the stress remains below yield if Y4 < 0, or if Y5 = 0 and § < N, since
(—1)5Y® > 0, but exceeds yield if § > N. Thus (5-3-12) is again a requirement at O if
G, = Y, = 0. Also in this case, with .S = N, the first set of conditions (5-3-13) trivially ensures
validity, while the third set is not possible at O, and a similar expansion procedure shows
that the second set is again the requirement when (—1)¥ GY” > 0. That s, (5-3-12), (5-3-13)
cover all necessary alternatives when Gg = Y = 0.
Given 2G; = Y5, then at the point M, a time d¢ later, the leading term expansions
give
26— Yar = 2(co— X)N-1 (= 1)¥-1GI® (8t)¥-1/(N—1) !+ (= X)S-1 (—1)S YO (3¢)5-1/(S—1)!,
(5-3-14)
which is required to be positive. Thus, for any §, N,
X=0=(—1)¥1G™M>, (5:3-15)

when (5-3:6) and the second set of conditions in (5-3-12) are not permissible. For
X< 0, the conditions (5-3:12) and the first set of (5-3:13) again follow. If (—1)¥"1GW),
(—1)N-1Y® > 0, the third set of (5-3-13) is already a stronger requirement, since

co-—X ¢yt

- >

> 2. (5-3-16)
—X a1

But in place of the second set a stronger condition is necessary,

(—1)VY®, (—1)¥GM>0; 2(N)=0, (5+3-17)
where D{my = (¢;)" 1 (—=1)" Y —2(co+c,)m 1 (—1)m G, (5:3-18)
This is obtained when (—X)/(c,—X) takes its maximum value at X =—¢, and is not

sufficient if X > —¢,. If 2(N) = 0, then the first corresponding strict inequality in the
higher derivatives must have the same sign.

If at least one of the strict inequalities (5-3-2), (5-3:10) holds, then (4:3-3) defines an
X < 0 as required, but in all cases

X=0=F=¢G". (5°3-19)
Also, the rearrangement
{2, F' 420, G' — (co+¢;) Y} (X4-¢)) = ¢;(c,+¢,) (2G"—Y7) (5:3-20)
shows that X = —¢, if one strict inequality holds, and in general

X=—¢=>26G =Y. (5°3-21)

The inverse implications of (5-3:19), (5-3-21) also follow except when 2F" = 2G" = Y'. In
the case 2F" = 2G’ = Y’ further differentiation of (4-3-2) is required to determine X. Since
F\, =0, Y, < 0, this occurs initially only if F, = Gi = Y, = 0. However, at a later stage
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with new ‘initial’ conditions, involving an initial wave H(x+¢,t), Y’ > 01is possible and the
case 2F' = 2G" = Y’ > 0 may arise. This case must be included in a complete examination
of a type D solution, and is required for later comparison with the other formal solutions to
a general interaction obtained in §6.

First, consider the case F' = G’ = ¥’ = 0, at P say. Repeated differentiation of (4-3-2)
gives

20y(cy + X)7 F 426, (c— XY™ (— 1)m GO — (cy-6,) (— X )" (—1)m Y0 — 0, (5:3:22)

where the mth derivative is the lowest non-vanishing derivative of either F, G, or Y at the
point P. If it is Y™, then immediately

S<M, N=>X=0, (5:3-23)

which is a permissible end-point velocity of the range, together with the consequent
requirement (5-3-15). Similarly

M<N,S=X=—¢, (5:3-24)

the other end-point velocity, when (5-3-6) applies, but N < M, §= X = ¢, and is not
permitted. For § = M < N, (5-3-22) becomes

2 (o+X )M _ (=1)Myen a.
%HI( ) = o (53-25)

and in view of the inequality —¢; < X < 0, and F®) > 0,
S=M< N=>X+0,—¢c; (—1)MY®D= 0, (5-3-26)
For $ = N < M, recalling (5-3-6),
(co+¢;) (— X)WV (—1)¥N YD = 2¢,(c,— X))V (— 1)V G > 0. (5:3-27)
Thus, in view of the inequality —¢, < X < 0, it follows that
S=N<M=X+0, 2(NY>0, or X=—¢<P(N)=0, (5-3-28)

where the definition (5-3-18) is used. Similarly, for § > M = N, recalling (—1)M-1G™ > 0
by (5-3-12), and the definition (5-1-13),

S>M=N=>X+—¢; CMY<0, X=0<=F(M)=0. (5:3-29)

It remains to consider the case $ = M = N for which each term in (5-3-22) is non

zero, except when X = 0 or —¢,. The conclusions depend on the signs of G®), Y0, If
(—1)M1GM > 0 and (—1)M Y > 0, then

(__I)M—lc;(M)< 60(61_}_1]:7)1%
FeD cl(co—X)M’

0< (5-3-30)
with the equality holding if, and only if, X =0, so that (5:3-29) again applies. If
(—=1)M-1GM > 0 and (—1)M Y < 0, then the latter inequality of (5:3:30) is reversed,
and no further restriction follows from the compatibility condition —¢, < X < 0. But here
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the necessary condition (5-3-8) shows that ¥(M) < 0, again. If (—1)MG® > 0, then
necessarily from (5:3:22), X+ 0 and (—1)™ Y@ > 0, so that
(—1)M Y00 20 (co——X)M
("6 G\ =)
with the equality holding if, and only if, X = —¢,. Thus (5:3-17) again follows, with N = M,
together with an end-point velocity condition, namely

GMY=0, X=—¢<=D(M)=0. (5-3-32)

(5:3-31)

Returning to the case 2F’ = 2G’ = ¥’ > 0, no simple equation for X in terms of higher
derivatives follows by further differentiation of (4-3-2). Thus no explicit compatibility
conditions for X are obtained. However, the various conditions necessary for valid elastic
and plastic stress distributions, obtained prior to (5-3-22) are shown to rule out valid
solutions of other types. Details are presented in the uniqueness and existence discussion in
the next section.

Finally, it has been noted in the stress validity discussions that if 2{M) = 0 or (M) = 0,
then the first corresponding strict inequalities in the higher derivatives must have the
appropriate sign, that is 2(M+m) > 0, € (M +m) < 0. When also the vanishing of (M)
or #{M) is accompanied by X = —¢, or X = 0 respectively, as in (5-3-28), (5-3-32), and
(5+3-29), then it is shown in appendix C that the above strict inequalities respectively
ensure that X increases or decreases. That is

X=—¢, 9(M)y=0; (X)0=0=9(M+r)=0 (r=1, ...,m—l),\
X~ 02(M+m) > 0; J

o

X=0, #(My=0; (X)0=0=%(M+r)=0 (r:1,...,m~1),} (5-3-34)

(5-3-33)

(X)W < 0<=>F(M-+m) < 0.

These results apply also in the case 2F" = 2G’ = Y’ > 0, although here the first equality
does notitself necessarily imply the appropriate end-point velocity. Furthermore, they apply
to the cases 2F' > 2G' = Y’, when X = —¢, by (5-3-21), and 2F’ = 2G’ > ¥’, when X = 0
by (5-3-19), by setting M = 1.

A summary of results is given in §5-6.

5-4. Validity conditions for the solution of type E

The elastic and plastic stress distributions are given by (4-1-2), (4-1-10) and (4-1-3),
(4-4-2), (4-4-3) respectively. The interface path and velocity are given by (4-4-4) and
(44+5), and X must satisfy —¢;, > X > —,.

Since do/dt vanishes on OP (figure 8) by the interface conditions (3-11), validity of the
plastic stress distribution requires that the stress does not unload in some neighbourhood
of O within the domain POZ, bounded by the first reflected characteristic OZ. This requires
that (do/dt)r > 0 as T — O along OZ, and that (do/dt)y > 0 as P— O, where V is taken in
turn to lie on the two sides of the dividing characteristic between the F and f domains.
Using (4-4-3), it follows that
1 (90

il - LA 4 Kedo
¢ %)T Fr—Go, (5-4-1)
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and letting T — O the consequent requirement at O is

F'=G, F=G=Fwns>q, (5-4-2)
1 (do Fo—Gp (v = (—ct)+),

Al ~(F). =% ‘ 54-3

s0 i)l G —en ) (5:4:3)

Letting P—O the requirement on x = (—¢,;¢)+ is met in view of (5-4-2), while on
x = (—c¢,t) — the further condition at O is that

(—1)m=1fm <0, (5-4-4)
S being the next non-vanishing derivative. But continued differentiation of (4-4-3) shows
that (X ) V-1 f 0 — (X =gy V=1 GO, (5-45)
and since X < —¢,, in (5-44) m = N and it follows that

(—1)¥1GM < 0. (5-4-6)

The elastic stress distribution is just at yield on the interface path OP by (3-11), and
do|dt vanishes, so validity in a neighbourhood of O beyond the first reflected characteristic
ON requires that (do/dt)x > 0 as K— O. Now using (4-4-3), it follows that

1/do , , »
%(E)K_—GP+GO’ (5:4-7)
which is positive as P—O(K — O) in view of (5-4-6). For validity near O up to ON it is
necessary and sufficient that Y(x) —G(x) > 0, as x— 0 through negative values. By (4-4-4)
this is satisfied if Y, < 0 when —Y{+Gg > 0, but for Y, = G, = 0 requires, anticipating
It S =
the result S = N, that (— 1)V ¥ = (—1)¥ G, (5-4-8)

Continued differentiation of (4-4-4) shows that

2000 — X)"H (—1)¥1 60 = (= X (— 1)V T, (54:9)

where neither side vanishes since —¢, > X > —¢,, so that § = N and, using (5-4-6),

(—1)¥-1Y® < o, (5+4-10)
Since 2 < CO—‘.X<€°+61, (5:4-11)
—X ¢

with the left- and right-hand equalities if X = —¢, and —¢, respectively, it follows from
(5-4-9) and (5-4+6), (5-4-10) that

P(N) <0, &(N)>0, (5:4-12)
recalling the definition (5-3-18) and defining
E(my = (—1)m Ym—2m(—1)mGm), (54:13)

68 Vor. 264. A.
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Note that (5:4-13) is a stronger condition than (5-4-8). Further, by appendix C,
X=—0=2(N)=0; (X)0=0=2(N+r)=0 (r=1,..,m—1),]
(X)™ < 0<>D(N+m) < 0; J
X=—¢,<&(N)=0; (X)®=0=6(N+ry=0 (r=1, )1
(X)™m > 0<=E(N+m) > 0.

(5-4-14)

(5-4-15)

Thus the first strict inequalities corresponding to (5-4:12), required for Validity, are equi-
valent to the interface acceleration having the appropriate direction.
The summary of results is given in §5-6.

5-5. Validity conditions for the solution of type F
In the elastic region the stress is given simply by the initial elastic wave G(x—¢,t), and in
the plastic region is given by (4:1:3) and (4-1:10), (4-1-11) with 2 = O and Freplaced by f.
The interface path and velocity are given by (4-5-1) and (4:5-2), and X must satisfy X < —c,.
The validity conditions (3+12) require that the stress is loading on both elastic and plastic
sides of the interface, thus
1 /0o ,
~(5) == =0

¢y \dt/,

,1,, (éo_-) :f’“_e’ — _CI<CO—_“‘?) (60+X) G/ 2 0
a\at/, coley— X) (e, + X)

(5°5°1)

>

where (4:1:10), (4:1-11) are used to eliminate f”, ¢’. It is therefore necessary and sufficient
for elastic validity that G’ < 0 or that G’ = 0, at O say, and decreases along the interface

path; hence G'<0, G=0=(—1)"GM > 0. (55-2)

From (4:5-2), since X < —¢,,

G <0=>G—-Y >0 G=0=Y =0, (5'5-3)

while the rearrangement  (X4-¢,) {G' — Y} = —¢, (Y’ —2G") (5-5-4)

then shows that 0=Y 226G, X=—c=Y =2G. (5:5-5)
Furthermore, since V' = 2G" < 0= G'—Y' > 0, (4-5-2) shows that

V' =2G"< 0= X = —q, (5:56)

If G' = 0 or X = —¢, then plastic validity at the interface, (5:5:1), requires respectively
that G’ decrease, given by (5:5-2), and that X decrease, equivalent to ¥’ —2G’ increasing
by (5+5-5). Further, if either case occurs at O, then it is necessary that (do/dt)y > 0 as
V-0 along the first f characteristic. Now by (4:1:11), G' =0=¢"=f" =0, and
(—1¥G®M > 0= (—1)¥e® > 0, and hence

(&U = Jfo—€tp=—6>0 (5:5:7)
as required. At each interface point it follows from (4:1-10), (4-1-11), using G’ < 0, that

flLe =6, f'=¢=G=X=—q (55-8)
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Thus in the case X = —¢, at O,
;;(%)V — Gly—dy < Gy—Gh. (5:59)
A necessary, but not sufficient, condition is then G, > G}, and therefore

X=—c¢= (—1)YGM> 0, (5°5°10)
Thus, by (5:5-2), (5:5+6) and (5:5-10), always

Y =2G" = (—1)YG™ > 0. (5'5-11)

Plastic validity in the domain ZOP, in a neighbourhood of O, requires that F, > ¢, or
that Fy = e and F' —¢’ increases away from O within ZOP. Since F’' = 0, ¢’ < 0, the strict
inequality holds unless F{, = ¢; = 0, but then F® > 0, (—1)¥¢® > 0 and F’—¢’ increases
as required. Necessarily F| > G, and F|, = G, is possible only if both vanish, when
FM >0, (—=1)YG™ > 0. In the case F' > G', 26"’ < Y’ < 0, both strict inequalities in
(5+5°1) hold.

It remains to ensure that if ¥'—2G" = 0 at O then it increases in the subsequent time
interval along the interface path. That is,

(— X)m1 (—1)m=1 Yo 4 2(gy— X)m=1 (—1)mGem > 0, (5-5-12)

where m is the least integer (> 1) giving a non-vanishing contribution. Immediately, (by
5-5-11), this is satisfied if § > N, while

S< N= (—1)5-1Y® > o, (5°5°13)

If § = N, (5-5-13) is a sufficient condition, leaving the alternative situation

(ZD¥G™ 1 (__:,)i )N“ 5
—ovre~sl—x) > 0. (5:514)
If Y’ = 2G’ < 0, then by (5-5:6), recalling the definition (5-4:13), this becomes
S=N, (=1)"Y™M>0, &N)<O. (5:5-15)
If Y = 2G’ = 0, continued differentiation of (4-5-1) shows that .§ = N and
o—X\¥  (—1)V YW

which shows that X = —¢y<>&(N) = 0, X < —¢y<>&(N) < 0. On using (5:5:16), (5-5-14)
reduces to X < —¢, which is therefore equivalent again to (5-5:15).

If #(N) = 0, then stress validity requires the first strict inequality corresponding to
(5+5-15), which is shown in appendix C to be equivalent to X decreasing from —¢,. Here
the case N =1 is included in view of (5-5-6). Thus

X=—¢=6(NY=0; (X))=0=8(N+r)=0 (r=1, com—1),] (5517
(X)) < 0= &(N+m) < 0. J )

The summary of results for each type of initial solution follows in the next section.

68-2
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5:6. Uniqueness

The formal solutions of types C, B, D, E, F to the initial meeting interaction have now
been examined in regard to validity within some finite region on both elastic and plastic
sides of the interface. It is shown in § 6 that the remaining type, 4, is not possible initially.
Under a wide range of conditions on the initial yield stress distribution and two initial wave
functions, the existence of a valid solution of at least one type has been demonstrated over
some subsequent interval of time. For various other conditions it is shown that none of these
solutions is valid, that is no single-interface solution exists. Further, there are conditions
which are shown to be necessary for validity of a given type of solution, but not sufficient
to ensure validity. As discussed earlier, if no single-interface solution exists the only alter-
native is a multi-interface solution. In each solution the interface path is defined by an
implicit algebraic equation. Again, for a wide range of initial conditions the Implicit
Function Theorem guarantees the existence of a unique continuous solution, but for the
other applicable conditions a modified theorem is needed. This is presented in appendix D,
and all six types of interface path equation are discussed there.

It remains to show that the conditions necessary for the validity of each type of solution
are mutually exclusive, so that for a given set of initial conditions only one type of solution
can be valid in the subsequent time interval. Thus, when a single-interface solution does
exist, it is unique, but this does not show that under the same set of initial conditions a valid
multi-interface solution is not possible. It is clearly not possible to investigate all formal
multi-interface solutions as the number of interface paths increases indefinitely (here an odd
number), and in fact for three interfaces there are 63 = 216 such solutions, all considerably
more complex than the single-interface solutions. But given a single-interface solution with
valid stress distributions over some finite region, it seems reasonable to assume that a multi-
interface solution is not possible, since this requires further changes of state across each
interface with no apparent mechanism available. When there is no valid stress distribution
on one side of a single-interface, for any type, then further changes of state, with corre-
sponding interfaces, are clearly required.

The validity conditions for the solutions of types B, C, D, I and F are most conveniently
summarized in the two separate cases ['== G’ and I’ = G’, where all functions are evaluated
at the initial point O for application to some initial time interval. Conditions necessary
for the validity of each type of solution in these two cases are listed in table 1 and 2 respec-
tively, and with the exception of those marked*, are also sufficient to ensure validity. Various
alternatives apply for different relative values of M, N, §. A valid solution of type 4 requires
the additional initial (incident) wave function %, not identically zero, and so is not appli-
cable initially to the meeting interaction.

Recalling the definitions (5-1-13) and (5-3-18), (5-4-13) it follows that F@®)(Q > 0,
(—1)M-1GM > 0 and F(M) < 0=>B(M) <0, and that (—1)YGM >0, (—1)"YMN >0
and 2(N) > 0=-6(N) > 0. With these results, which distinguish between certain of
the validity conditions for types D and F, it is evident from tables 1 and 2 that the
sets of conditions for the five different types of solution are mutually exclusive. In the
case F'== G, table 1, it also follows that the different sets include the majority of possible
initial conditions, although the sets marked* are not proved sufficient. The range
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of conditions not included is for 2G" = Y’ with § < N and (—1)51Y® >0, or §= N,
(—1)¥1YM > 0 and &(N) < 0. Thus the existence of a single-interface solution is demon-
strated over a wide range of conditions. In the case F' = G’, table 2, there is the obvious
range of initial conditions F* < 0 and (—1)"1GM <0 or (—1)¥1GM> 0, M <N,
for which no single-interface solution exists.

TABLE 1. NECESSARY CONDITIONS FOR VALIDITY OF MEETING INTERACTION SOLUTIONS,
F' & G'; * DENOTES CONDITIONS NOT SUFFICIENT TO ENSURE VALIDITY

O0SF <G B

2F > 2G' = V' D
S> N, (=1)-1GW > 0
S< N, (=157 >0
S =N, (=D¥-1GW >0, (—=1)NY™ > 0,
or (—D¥1GW > 0, (—1D¥1YWM > 0 and &N) > 0,
or (—=L¥GW >0, (—=1)NYW > 0 and Z(N) > 0%
E
S=N, (=1¥G®™ >0, (—1¥Y™ >0 and

G{(N) <0, E(N) >0

F
(—1)¥GW™ > 0* and
S > N,
S < N, (=1)51Y® >0
=N, (=1¥1YW > @,
or (—=L)VY®™ >0 and &(N) <0

2F > 2G" > Y’ D

F'>G,26G" <Y <0 F

For brevity, the conditions listed in tables 1 and 2 assume a definite sign for Z(M),
G(M)Y, 2(N) and &(N). It has been shown that if one of these expressions vanishes, then the
first corresponding non-vanishing expression in the higher derivatives must take the
appropriate sign, and this extension is a supplement to the listed conditions. The special
linear profile case F’' = G’ > 0, F®) = G¥) = 0 (M = 2), when table 2 is not applicable, is
treated in appendix B, where it is shown that solutions of types C, B, and D are all equivalent.
Type F is excluded by G’ > 0, and also type E since ¥’ < 0 initially is not permitted. That
is, the stress distributions are identical and an interface is not strictly defined, being replaced
by a finite region of uniform stress. Further, the cases Z(M) =0, (M) =0 (M < 2),
PD(N) =0, &(N) = 0 (N = 2), when there is no first corresponding non-vanishing expres-
sion, have been shown to apply to one type of solution only, ensuring uniqueness.
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534 L. W. MORLAND AND A. D. COX

With the exception of the cases /' < G’ and 2F’" > 2G’ > Y’, the criteria distinguishing
between the different types of solution depend on higher derivatives of the initial wave
functions and yield stress distribution. Such sensitive distinctions, required with an appro-
priate equality between first derivatives of the initial functions, would not be noted in trial
numerical solutions, and an invalid type of solution may be accepted. The difference in

TaBLE 2. NECESSARY CONDITIONS FOR VALIDITY OF MEETING INTERACTION SOLUTIONS,
I’ = G'; * DENOTES CONDITIONS NOT SUFFICIENT TO ENSURE VALIDITY

F =G
(=N-1GW > 0 [ (—1)¥-1GW < 0
— - ‘v U
F > B ! F
M > N, | 26 = Y =0
M =N, B(M) >0 | S=N, (=1)YYW >0 and &(N) <0
c E
M = N, M) <0 < E(M) 2G' = Y’
S=N, (~1)Y® >0 and
DNy < 0, ENY >0
D D
M < N, 2G' > Y'(X = 0),
M =N, #(M) < 0* and or 2G' =Y'(X % 0)
2G" > Y (X =0), S <N, (=1)SY® >0
or 26" =Y S=N, (—L¥YW >0 and Z(N) > 0%
S > N,
§>N, (=1)5Y® >0
S =N, (=1NYWm >0,
or (—1M1Y® >0 and &(N) > 0
FM < 0 B
M < N(F' > 0)

local stress from the actual valid distribution will be small, but the incorrect type of solution
can predict a significantly different interface motion, which in turn influences the future
progress of the interaction. It is not clear whether the resulting stress distribution at later
times, having passed over this small local error, would be significantly changed.

The above criteria for the validity of solutions of types B to /¥in a subsequent time interval
may be applied at any point on the interface path, once the previous valid solution is
determined. That is, the valid solution over a long time may be constructed as a series of
short-time solutions, applying the criteria successively at each new initial interface point.
Of course the above conditions relate only to single oncoming elastic and plastic waves,
G(x—cyt) and F(x+¢, 1), incident on the interface, while at a general interaction point, one
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of the other waves H(x-¢,t), E(x—c,t), may be incident. Such waves are generated by the
earlier interaction, and one will be currently incident if the interface velocity lies in the
appropriate range, as discussed in § 3. Thus the progress of the interaction, and in particular
uniqueness of solution at each stage, requires an investigation of all possible types of solution
under general ‘initial’ conditions. This is completed in the next section, where six sets of
mutually exclusive conditions for the six types are derived.

While the validity criteria for the current type of solution continue to hold at each point
on the interface path, then no change of type is possible (by the mutually exclusive unique-
ness property), and a long time solution may be described by a single type. Furthermore,
a change of type (or possible breakdown of all single-interface solutions) is required as soon
as the criteria are violated at the current interface point, and the new type (if any) is
uniquely determined by the current conditions. At such change-overs the interface velocity
may pass continuously between the two ranges, or change discontinuously. In particular,
the latter situation occurs when the governing criteria change abruptly due to discontinuities
in the relevant derivatives, that is, the left- and right-hand derivatives of a given function
are not equal. The subsequent solution is governed by the appropriate left- or right-hand
derivatives of the different functions, and such discontinuities can change the effect of the
respective stress variation, since the different criteria, through the derivatives, are statements
of the required relative steepness of the wave profiles and yield stress distribution. Further-
more, in this sense, it is possible to interpret some of the validity criteria without the
existence of left- or right-hand derivatives. '

6. GENERAL INTERACTION

The most general initial conditions involve waves propagating in the positive and
negative directions in both elastic and plastic regions, and therefore include prescribed
wave functions H(x+¢,t) and E(x—¢, ¢) in addition to the meeting wave functions G (¥ —c¢, )
and F(x+c¢,t) already treated. Waves H(x+¢,t) or E(x—c¢,¢) incident on the current inter-
face can arise from previous stages of the interaction, or from separate interactions, and,
together with G(x—c¢,t), F(x+e¢,t), Y(x), are restricted only in the sense that the new initial
stress distributions are valid. An interaction solution over a finite period can involve
repeated changes in type of solution, and at each stage the new initial conditions of general
form must be considered. General solutions for each of the six types of interface will now be
determined, together with conditions for their validity which show that at most one type of
single-interface solution is valid for given initial conditions. The existence of valid solutions
of the super-fast type 4 is demonstrated. Again, for various conditions no single-interface
solution is valid.

Reference to figures 5, 7 and 8 shows that in the interactions of types C, D, and £, which
cover the range of interface velocity —¢, < X < ¢, neither of the initial waves H(x+cyt),
E(x—¢,t) would be incident on the interface. Such waves are represented by negative
characteristics below ON, and positive characteristics below OZ, respectively, and do not
intersect the interface path OP. Thus the solutions and validity conditions for types C, D
and E derived in §§4 and 5 are unchanged by the additional initial waves. Recall that general
forms of G(x), Y(x), not valid for the single elastic wave were included. However, reference


http://rsta.royalsocietypublishing.org/

| A
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

FA \

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

536 L. W. MORLAND AND A. D. COX

to figures 6 and 9 show that an initial wave E(x—¢, ¢) would be incident on an interface of
type B, and an initial wave H (x -+ ¢,t) would be incident on an interface of type F. It therefore
remains to consider interaction solutions of types B, 4 and F under the general initial
conditions. The previous validity conditions for types B and F are now modified.

h(x+cot)

H(x+cot)~ m'q"

/s \
Gx=cot) P E(x-cit) F(x+cit)

X

Ficure 10. General characteristics diagram for fast plastic-elastic interface,
type B; interface paths shown ———.

h(x+cot)

N \ 23X
Q XS . (x=cot)
ZIRSIIRIL glx=Co
H(e+ RSRIZIRIIRSLS =
Geet) RIRRIRTRES

Gle-cot) 2 J 0@06‘0‘

/ /
P E(x~c,t) F(x+et)

X

Ficure 11. General characteristics diagram for super-fast plastic-elastic
interface, type 4; interface paths shown ———.

In figures 10, 11 and 12, Q represents the initial point of the interface path QR for the
appropriate interaction, while the path PQ is included to indicate an undefined previous
interaction stage and is arbitrarily positioned. Clearly PQ and QR may both be paths of
the same type, that is, no change of type occurs at Q , when the additional incident wave
H(x+cyt) or E(x—¢,t) is due to alternative or earlier interactions. Thus the validity condi-
tions allow an interaction solution to be constructed step-by-step, either involving change
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of type or remaining within the same type. Each type of solution is examined over a sub-
sequent time interval and the validity conditions are expressed in terms of functions
evaluated at ). In particular, F®, G™, Y will now refer to the appropriate wave function
and yield stress distribution derivatives evaluated at (). Further, ignoring the first deriva-
tives H', E’ as before, define H®, E® to be the first non-vanishing derivatives (P, L > 2) of
Hand Eat Q.

Examination of the general interaction solutions follows closely the lines of the meeting
interaction treatment, and less discussion and detail will be given.

e(x-c,t)

E(-c,t) Fetet)

X

Ficure 12. General characteristics diagram for super-fast elastic-plastic
interface, type F; interface paths shown ———.

6:-1. Solution for a _fast plastic-elastic interface, type B

The characteristics diagram is shown in figure 10 with the type B interface represented
by QR, and the interface velocity satisfies ¢, = X > ¢,. The additional initial wave E(x—¢, t)
isincident on the interface and modifies the type B solution derived in § 4.2. Initial and stress
continuity conditions again give (4-1-2) to (4-1-4) if ¢ is replaced by E, and O by Q, and
similarly particle velocity continuity gives (4+1-11) which becomes an implicit equation for
X(t), namely

20,{Yq—G[X(t) —eot]}— (co—e1) {FIX () + ¢y 8] — Yo} + (co+e1) E[X (1) — ¢, 4] = 0. (6:1-1)

Here we have set Eq = H, = hq = 0 for convenience, when Gy = Fy = ¥, and (6:1-1) is
automatically satisfied at Q . Differentiating (6:1-1) gives the two interface velocity results

(X—6;) {26, G+ (cg—e)) F'— (co+¢,) E'} = 2, (¢y—¢y) (G'—F), (6-1-2)
(%"‘X) {26,G"+ (¢g—¢)) F'— (cy+¢;) E'} = (c5—c}) (F'—E"). (61-3)

69 VoL. 264. A.
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538 L. W. MORLAND AND A. D. COX
Now using the validity requirements (3:3),
l(éﬂ') _ QCO(X—i".CI) (FI~—G,) < 0, (6.1.4)
6o \0t/e  (co+0y) (X4co)
1 (do ', g 1
a(g)sz—-E >0, (6:1-5)
so that E<F <G (6-1-6)
Thus from (6-1-2) and (6-1-3),
X=¢=>G=F, E<F =G=X=q¢, (6-1-7)
X=¢,>F =E, FF=E <G = X=q, (6-18)

If E' < F' <G’ at Q, then the elastic and plastic validity conditions are satisfied in some
neighbourhood of Q for x > xq beyond the first incident characteristic TQ , and also insome
neighbourhood x < x4 since it follows from F < Gj, that Yx —ox > 0 as K— Q. Validity
below QK is assumed satisfied, being a condition on the initial wave function A not involved
in the interaction. Further, X lies strictly within the required range.

When F’ = E’ at Q, then plastic validity requires that /' —E’ becomes positive imme-
diately beyond Q , and that the stress is loading at T as T — Q) . Now

1 /do ’ ’ .1.
a (—a—t)rr = EQ—ER> 0, (6 ]. 9)
and hence F' = FE = ED <. (6:1-10)

The former requirement is expressed by differentiating F'—E’ until a non-vanishing
expression is obtained, thus

(X+4c)m L F— (X —¢)) E™ > 0. (6-1-11)

If L < M, that is E®= 0, FO = 0, and X+ ¢, (6-1-11) is satisfied in view of (6:1:10), while
if L < M and X = ¢,, only possible if F” = G’ by (6:1-8), or if L > M, the required condition
is F® > 0. That is

L<M, X=¢, or L>M=FM>0, (6:1-12)

For L = M, (6-1-11) is trivially satisfied if F®) > 0, noting (6-1-10), while if F®) < 0 and

X = ¢, it requires _ o _ (X——CI)M—I (CO_CI)M_I (61-13)
—ro = \3 1, ota)

The latter inequality is necessary, and is sufficient only if X = ¢,, which includes, by (6-1-8),
the case /' < G’. Define

my = (cg—c1)" " E™— (cy+c;)™ " F, (6:1-14)
then (6-1-13) becomes FO <0, A(M)<DO. (6:1-15)

If F" =G’ at Q, then elastic validity requires that F” — G’ decreases, and that Yy —og > 0
as K—Q , now equivalent to Yy —Gx > 0. From an expansion in #x —¢, it is found that the
latter condition requires 206" > V', (6:1-16)
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and, if 26" = Y’, the additional implications
S<N=(=1)Y9>0, §>N=(—1)"1GM>0,]
(6:1-17)
8= N==&N)>0, J

recalling the definition (5-4:13). The expression analogous to (6:1-11) for the change of
F'— G’ leads to the following requirements:

M<N or M=N, X=q=F"<0)

: (6:1-18)
M>N, X=+c=(—1)¥1GM= 0. J
If M = N, then necessarily
FM > 0= (—1)M 1G>0, B(M)>0, (6-1-19)

recalling the definition (5-1-13), where the latter inequality is also sufficient if X = ¢,, while
the case F® < 0, (—1)M1GM > 0 is trivially valid. Further, any values of F®) <0,
(—1)M-1G@) < 0 may be valid, depending on X, but if X =¢, the condition is that
B{M) > 0.

When £’ = F’ = G’ at Q , no explicit expression for X is given by (6-1:1), and in particular
it is not necessarily an end-point velocity ¢, or ¢,, so that sufficiency of some of the previous
validity conditions cannot be affirmed. Continued differentiation of (6-1-1) in the case
E' = F' = G’ = 0 leads to various conditions under which X does take an end-point value.
In both situations, if 2 M) = 0 is accompanied by X = ¢,, the requirement that the first
non-vanishing /(M) < 0 is equivalent to X decreasing, and similarly if Z(M) = 0 and
X = ¢,, then #(m) > 0 is equivalent to X increasing; see appendix C.

6-2. Solution for a super-fast plastic-elastic interface, type A

The characteristics diagram is shown in figure 11 with the type 4 interface represented
by QR, and the interface velocity satisfies ¢, < X. Again the initial elastic wave H(x+c¢, )
does not influence the interaction, except that a valid elastic stress distribution is assumed
in some neighbourhood of QQ up to the first reflected characteristic QK. Further, the initial
wave G(x—c,t) is defined only in the domain beyond QL, and does not enter the solution
for X(¢) and the subsequently formed waves A(x+-cyt) and g(x—c,yt), but is restricted for
validity in some neighbourhood KQL. The elastic wave g(x —¢,¢) is continuously created by
the interaction, but follows the interface at slower speed. Initial and continuity conditions
lead to (4:1-2) to (4:1-4) and (4-1-10), (4-1-11) with the replacements G—g, ¢e—E,O—Q,
and the further interface condition (8-7) provides an implicit equation for X(¢), namely

F[X() +0,t] = E'[X() —e,t]. (6-2:1)

The restriction F, = Eg is necessary for a type 4 solution, which will therefore not com-
monly occur in practice. From (4-1-10), (4-1-11) and (6-2-1), it also follows that

X)) +eot] = g'[X(E) —cot] = F'[X(E)+e 8] = E'[X(t) —¢, t]. (6-2-2)
Continued differentiation of (6:2:1) shows, since X > ¢,, that L = M and
(X4¢)M-1FO) — (X —¢))M-1 EG), (6-2-3)

69-2
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so that F'®, E®) have the same sign. Since do/dt vanishes on QR by (3-7), plastic validity
requires do/dt > 0 as T—Q . Now

1 (90' ’ ’ ’ Ll
6 (WQE)T =Fy—Fy=Eq—Lz, <0 (6-2-4)
implies ren <o, EWM <0, (6-2-5)
Go—e\ M1 —FD
2. b=4 T 626
Hence, from (6-2-3), (Co"‘ﬁ) <—zaw <1y ( )

where the left-hand equality is the limit as X - ¢,, and the right-hand equality is the limit as
X —>00. Recalling the definition (6-1-14), (6-2-6) requires

A (M) >0, (6-27)
and ifs/ (M = 0 then the first non-vanishing«/{m) > 0, which is equivalent to X increasing
from ¢;; see appendix C. Note that (6-2-1) and (6-2-3) imply that £(x) is not identically
zero, verifying that type 4 is not a possible solution to the meeting interaction.

Again by (8-7), elastic validity in a neighbourhood RQL requires that (do/dt), < 0 as
L—+Q.Now 1 (30
o (g;)L =—8o+&r <0 (6-2-8)
implies that the first non-vanishing g™ < 0 (m > 1), and by (6:2-2), since X > ¢, this
implies m = M and F® < 0, guaranteed by (6-2:5). For validity in KQL, the requirement
in & < xq is that ¥y —og > 0 as K—Q , which is just a repeat of the same type Bsituation,
and again implies (6-1-16) and (6-1-17). At Q,

]. 30 ’ ’ _ 3¢
a(gvt)Q:“GQ+FQ<0, (6-2-9)
which requires I, < Gg, and further, if F, = Gj, that
1 30 ! ! Y4 !
—-(—) — Gl Fly = —F+F}, < 0, (6-2:10)
e \dt/y,
as L->Q . Thus Fi<G or F=G and F™ <. (6-2-11)

6:3. Solution for a super-fast elastic-plastic interface, type F

The characteristics diagram is shown in figure 12 with the type F interface represented
by QR, and the interface velocity satisfies X < —¢,. The initial plastic waves E(x—¢,),
F(x+¢;t) donotinfluence the interaction solution, but are relevant to a valid distribution in
a neighbourhood TQV. A plastic wave f(x—c¢,t), created by the interaction, follows the
interface at slower speed. Both initial elastic waves G(x—¢,¢) and H(x-¢,t) are incident on
the interface. Again (4-1-1) to (4:1-4) and (4-1-10), (4-1-11) apply with the replacements
O0-+Q, h—H, F—f, and the further interface condition (3:12) provides an implicit
equation for X(¢), namely

GLX() eyl +HIX(8) +¢,] = YIX()], (6:3-1)
automatically satisfied at Q . Differentiating gives the interface velocity expressions
X{G'+H — Y = —cy(H' —G"), (6-3-2)

(X4e) {G'+H —Y"} = —¢ (Y —2G"). (6-3-3)
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Validity requires that the stress is loading on both elastic and plastic sides of the interface,
by (3:12), so that on using (4-1-10) and (4+1-11),

1 (@) —_G'H >0,

¢y \ Ot
l(@g) _fe = cl(co~§:,’) (co—{—X:') (H—G) >0, (6-3-4)
e \dt/ 6o(e;—&X) (6, +X)
and hence H =G (6-3-5)
Further, from (4:1-10) and (4:1-11), if H' = G’ at Q, then
H=0C=¢=f, (6-3-6)
while if X = —g,, G =e =f" (6-3-7)
Now since X < —c¢,, it follows from (6:3-2) and (6-3-3) that
X=—¢, or H=G=26G=Y,
X+ —¢, and 26G'=Y'=H =G, (6:3-8)
H>G=26G'<KY,
so in view of (6:3-5), always 2G" < Y. (6-3-9)

If, at Q, ¥’ > 2G’, then noting (6-3-8), H' > G’ and X + —¢,, and both strict inequalities
of (6-3-4) hold. With H' > G" and 2G" = Y’, the strict elastic inequality holds, but the plastic
inequality also requires X —cp, and if X = —¢, it is necessary that ¥’ —2G" increase along
the path so that X decreases, as required anyway by (6-3-9). Further, if H' —G’ = 0, when
Y'—2G’ = 0, both quantities must increase. These conditions will ensure elastic validity
near Q , subject to an initially valid distribution. It remains to consider cases in which at
least one of the conditions H' = G’ or X = —¢, holds and (do/ dt), vanishes at Q.

First note the result that at each interface point

¢ =G, (6-3-10)

which follows from (4:1-10), (4-1-11) and (6-3-5), where the equality holds if, and only if|
H =G and X =—¢, (26’ =Y"). As T—-Q and V—Q along the respective limit charac-
teristics of the F, e domain, plastic validity requires

51«1 (%‘;)T — Fy—éy >0,

1 /3 (6'3'11)
a 7 4

‘(;—1 (_3;)\7 - FQ—‘eR > 0.

From the first and (6-3-10) it is necessary that £ = G, and from the second that F§ > Gy
and hence, if |, = Gy, then (—1)¥G® > 0. Further, as V—Q in the f, ¢ domain,

1 /do .,
o (at), = Same=o (6:3:12)

and since H' = G’ or X = —¢, at Q, (6:3-6), and (6-3-7) show that Jfo = Gg, so that a
necessary condition is that G > e = Gg; thus

(=1)¥G® > 0. (6-3-13)
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Note that 26" = ¥’ = H' = G’ or X = —¢, by (6:3-8), and hence implies (6:3-13). When
neither H' = G’ nor X = —g,, it has been seen that the stress is strictly loading in some
neighbourhood VQR. Also, letting T —Q in the F, E domain, it follows that

F'>E or FF=E and F®=>o. (6-3-14)

Returning to the case Y'—2G’ = 0 at Q) , and so required to increase along the interface
path, the results (5-5-18), (5-5-14) again follow, noting that (6-3-13) holds. I'urther, the
condition (5-5:15) is necessary, but only sufficient if X = —¢, Again, if &(N) =0 is
accompanied by X = —¢,, then X decreasing and the first non-vanishing &(m) < 0 are
equivalent; see appendix C. Finally, if H'—G’ =0 at Q, the increasing requirement
becomes (6-3-13) again if X = —¢, or P > N, together with the alternatives

P< N, X+—c¢y= (—1)P"LH® > 0, (6-3-15)

_ -t (=GO (*60:,%" )N“‘ 3
P=N= (—1)Y1HM>0 or (—1)NH(N)> X > 0, (6:3-16)

where the latter inequality provides no explicit condition.

6-4. Validity conditions for the six types of solution, uniqueness

Validity of the initial stress distributions has been tacitly assumed in the general solutions,
that is, in some neighbourhood of Q within the domains governed by characteristics
reflected from the interface path up to the point Q). In fact this implies conditions on the
wave functions H(x+-cyt), E(x—¢,t) and yield stress distribution Y(x), evaluated at Q.
Where any of these functions are involved in the interaction these conditions are included
in the general validity conditions, but H(x+¢,¢) is not involved in types 4 to £, and E(x—¢, )
is not involved in the types C to F. Conditions for these two classes should then be supple-
mented by the additional initial distribution requirements. Complete conditions were
derived for the meeting interaction solutions, but there H(x—+¢,¢), E(x—¢,t) were absent.

The additional conditions in the first class, types 4 to £, follow from the requirement that
Yy —ox > 0 as K—Q along the G-characteristic incident at QQ, where a typical point K is
that shown in figure 12. This is equivalent to ¥ix — Gy — Hy > 0, which may be expressed in
terms of derivatives by an expansion about Q, recalling that ¥,—Gy—H, = 0, and the
results are given in table 3. Similarly, in the second class, types C to F, it is required that
(do|dt)y > 0 as T—Q along the F-characteristic incident at Q) , where a typical point T is
that shown in figure 10. Thus F, — Ey > 0 is required, and the consequent results are given
in table 3.

A full set of conditions necessary for validity of the general solutions of types B, 4, and F
are presented in the four tables 4 to 7. These specifically distinguish between the various
cases of /"= G’ and F’' = G’ for easier comparison with tables 1 and 2 where the conditions
for types C, D and FE are already general. Careful examination of the numerous subcases
shows that the six sets of conditions for the six types are mutually exclusive, so verifying
uniqueness of the single-interface solution for general initial conditions. It will be noted that
many more conditions are not sufficient to ensure validity, those denoted by *. Each such
condition is associated with a type B, D or I solution for which the interface path equation
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TABLE 3. SUPPLEMENTARY INITIAL VALIDITY CONDITIONS

A, B,C, D, E 2H > Y’
or 2H =Y’

S>P, (—-LHFITH® >0

S <P, (=15Y7% >0

S =P, (=1)SY® > 25(—1)SHS
o C,D,E,F F' > E'
;\—l ~ or F'=FE and E® <0
NI
S —~ TABLE 4. NECESSARY CONDITIONS FOR VALIDITY OF GENERAL SOLUTIONs [/ > (',
e = * DENOTES CONDITIONS NOT SUFFICIENT TO ENSURE VALIDITY
=0
T O F' > G
=w
2% ;
e 2G' <Y’ and G' < H
gg ! or 2G' =Y and (—1)"GW > 0 or G'=H and (—1)"G™ >0
85,0 S > N, P< N, X%—c, (=L)P'HP >0
EE S < N, (=1)517® > 0 P = N*
ol S=N, (=1)¥Y® >0 and &(N) < 0% and

E < F or E =F, FM >0

TABLE 5. NECESSARY CONDITIONS FOR VALIDITY OF GENERAL SOLUTIONS, F' < G’}
* DENOTES CONDITIONS NOT SUFFICIENT TO ENSURE VALIDITY

E<F <G B
B
E=F<G | L>M, EW < 0, FOn > 0%
_ A L S M, X = CI,
- L=M, X+¢, EM <0, FM <0 and (M) < 0%,
’_J ! !
< and 2G' > Y
>"‘E or 2G' =Y’
2 33 S > N, (=116 > 0
m O S < N, (—1)S7® > 0
ZO S = N, E(NY > 0
=u
- ) A
55 L =M, EUD <0, FOO <0 and /(M) > 0,
= and 2G’' > Y’
8Uu. ’ ,
mgo or 2G' =Y
92 S > N, (—=1)V-1GW > 0
T S < N, (—1)SY® > 0
S =N, E(NY > 0
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TABLE 6. NECESSARY CONDITIONS FOR VALIDITY OF GENERAL SOLUTIONS, ' < F' = G';
* DENOTES CONDITIONS NOT SUFFICIENT TO ENSURE VALIDITY

E <F =G
B
Fon <
X =0

X #¢, FO >0, (=1)M1GHM > 0 and
and B{M)y > 0%, v or
or FM <0, (—1M-1G™M > 0, S>N
or FM < 0, (—1)MGM > 0* S < N,
and 2G’' > Y’ S = N,
or 2G' =Y’ and
(=1¥-1G™ > 0 or
(=1)SY9 >0 P < N,
&(N)y > 0 P = N*

F
(—1¥G™ > 0
26" < ¥’
26" = V'

(—1)S-1Y® > 0
(=1)¥YW > 0 and &(N) < 0%
H > G
H =G

X +—-¢ and (—1)FP1H® >0

y M < N,
<@ M > N,
2} B | M= N,
P
ol=
e
= O
g
=w
3% S >N,
Eg S < N,
-9
025 S = N,
LD
oz
T
o=

TABLE 7A. NECGESSARY CONDITIONS FOR VALIDITY OF MEETING INTERACTION SOLUTIONS,
E’ = F' = G'; * DENOTES CONDITIONS NOT SUFFICIENT TO ENSURE VALIDITY

A \\
b ¢

\
\

-
A\
A \

Vs
¥

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

—

E'=F =G, F™ >0
(—=1)¥1GW > 0 (—1¥1GW < 0
B F
E® <0 2G' <Y,
M=N M) > 0% G' < H
“and 2G' > Y’ or 2G' =Y’
or 2G' =Y’ §>N
S> N S< N, (—=151Y® >0
S< N, (=1)5Y® >0 S=0N, (1YW >0 and &(N) < 0%,
=N, &(NYy>0 and G' < H’
or G'=H'
P<N, X%-—¢ and (=1)PFH® >0
P = N*
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TABLE 7B. NECESSARY CONDITIONS FOR VALIDITY OF MEETING INTERAGTION SOLUTIONS,
E'" = F' = G'; * DENOTES CONDITIONS NOT SUFFIGIENT TO ENSURE VALIDITY

E=F =G, FM <0
(—1)¥-1GW > 0 (=116 < 0
B B
L=MX+c¢, E™ <0 and (M) < 0% | L=MX+e¢, EM <0 and (M) < 0*
and M < Nor M> N, X=qg, and M <Nor M>N, X=q
and 2G' > Y’ and 2G' > Y’
or 2G' =Y’ or 2G' =Y’
S>N S < N, (=1)SY®) >0
S < N, (=1)8Y9 >0 S = N, &(N) >0
S =N, E(NY >0
A A
L=M, EM < 0 and /(M) > 0, L = M, EM <0 and (M) > 0,
and 2G’' > Y’ and 2G' > Y’
or 2G' =Y’ or 2G' =Y’
S >N
S < N, (=1)5Y® > 0 S < N, (=1)sY® > 0
S =N, &(N)Y >0 S =N, &(N) > 0

involves three initial functions, and explicit results cannot always be deduced from the
interface velocity inequalities. There are more situations in which no single-interface
solution is valid, and a multi-interface solution is required.

Again definite signs are assumed for the expressions (M), #{M) and &{(N) with the
understanding that a vanishing expression requires the first corresponding non-vanishing
expression to take the appropriate sign. If all the corresponding expressions vanish then the
limit solution falls into one type, that with the closed interface velocity range. Special linear
profile cases, in which two or three of the initial functions have identical constant first
derivatives and all higher derivatives zero, arise as in the meeting interaction. The different
types of solution for such cases are not distinguished by the results in the tables, but are
equivalent in similar manner to the cases discussed in appendix B.

Finally, we may note that the second basic interaction involving only single elastic and
plastic waves, an overtaking interaction, is described by H=0, F =0, E' < 0 (plastic
loading), G" > 0 (elastic unloading) for which it is seen (table 4) that only a type B solution
is possible, and in fact always exists. This was shown in [M].

CONCLUDING REMARKS

The uniqueness of the single-interface solution for general initial conditions has been
proved, and the existence of such a solution shown for a wide range of conditions. We have
therefore demonstrated, to a considerable extent, that the assumed elastic-plastic model

70 VoL. 264. A.
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provides a consistent description of the transient response to dynamic loading. Moreover,
the validity conditions predetermine the type of solution to construct. However, it has not
been proved that under conditions for which a single-interface solution exists, a multi-
interface solution cannot exist also. Such a solution, though, requires further changes of
state at the new interface, where in the single-interface solution no mechanism for this
change exists. It appears then, very unlikely that a multi-interface solution will occur under
these circumstances.

In cases where no single-interface solution exists, the sets of validity conditions which fail
in each type of solution show, from their derivation, the region and cause of breakdown.
That is, where the stress distributions are not consistent with the elastic-plastic model. This
provides some indication of regions in which a new interface path develops, and perhaps of
the type of interface required.

It has been pointed out that the choice of type of solution for given conditions may depend
sensitively on higher derivatives of the initial functions, which a numerical finite-difference
or characteristics scheme would not detect. An open question is whether local errors passed
over by such a scheme build-up as the interaction proceeds, or in practice remain insigni-
ficant. However, typical initial conditions will not rely on such sensitive distinctions, and in
fact the choice of solution will commonly be decided by inequalities between first deriva-
tives of the initial functions. Furthermore, the solutions of types 4, C and E, which require
cqualities between first derivatives, are likely to be uncommon, so that in most cases the
choice is between types B, D and F. We recall here that the conditions imply the left or
right-hand derivatives appropriate to the subsequent interval of time.

This investigation of uniqueness and existence of solutions to wave interactions arose
from discussions held during a visiting appointment (L. W.M.) at the R.A.R.D.E., Fort
Halstead, in 1963.

NoraTION
x is a Lagrangian coordinate along the axis of propagation.
¢ denotes time.
U, v are particle displacement and velocity respectively.
o, € are principal engineering compressive stress and strain components respectively
in the x-direction.
Cos €1 are Lagrangian elastic and plastic wave speeds respectively.
X(2) denotes current position of an interface between elastic and plastic regions.
Y (x) is a yield stress distribution.

G, H and E, I denote initial elastic and plastic wave functions respectively, representing
in order propagation in positive x- and negative x-directions.

L, M, N, P, S are orders of lowest non-vanishing derivatives (excluding first derivative)
of the functions E, F, G, H, Y respectively.

A my = (cg— ;)" LE™ — (cy+¢,)m 1 Fm,
By = () (—1)71 G (3¢, )L o,
Omy = (201 (1)1 G (31 o

Dmy = (e)™ 1 (—=1)" YD —2(co+¢;) =1 (—1)m G,
E(my = (—1)m Y gm(_1)m Gom,
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APPENDIX A. STRESS DISCONTINUITIES AT AN INTERFACE

Since the initial stress wave distributions, and yield stress distribution, are continuous,
any stress discontinuity which occurs subsequently must necessarily propagate along a
characteristic emerging from the interface path, or along the interface path itself. The
solutions based on stress continuity at the interface show that the stress waves generated at
the interface are also continuous, so that it remains only to examine the possibility of a stress
discontinuity at the interface. By (2:20) the interface speed is then either the elastic wave
speed ¢, or the plastic wave speed ¢;, with the choice governed by the instantaneous change
of state. Four different cases must be considered:

(i) X(¢) = ¢,, an elastic unloading discontinuity;

(i) X(f) = ¢, a plastic loading discontinuity;

(iii) X(#) = —¢,, a plastic loading discontinuity;

(iv) X(t) = —c,, an elastic loading discontinuity.
In case (iii) the stress is at yield immediately ahead of the discontinuity, while in case (iv)
the stress is at yield immediately behind the discontinuity. Analogous cases arise for the
reverse yield situation.

It can be assumed that the stress discontinuity first forms at £ = 0, and the initial con-
tinuous conditions are those for the general interaction described in §6. In fact for each of
the above interface velocities an initial elastic wave H(x+-c,t) is not incident on the inter-
face, but an initial plastic wave E(x—c¢, ¢) does affect case (i). Further, an initial elastic wave
G(x—c¢,yt) does not affect case (i), while an initial plastic wave F(x+-¢,¢) does not affect
cases (iii) and (iv). The magnitude of the stress discontinuity is represented by A(¢), where
A(0) = 0, and it is shown that in all four cases A(f) = 0 for ¢ > 0; that is, no stress dis-
continuity can be formed at the interface by initially continuous stress waves. The formal
solutions are determined by the initial conditions and the stress-particle velocity jump
relation (2-20), together with the yield condition in cases (iii) and (iv).

(i) X(t) =¢t (t=0),

Fl(co+e)) t]+E[(co—ey) t] = A(t) + 00+ [ 2], (A1)
co{oo—F[(cy+¢) t]+E[(co—ey) t]} = e {A(2) —h[2¢yt]}. (A 2)

Eliminating A[2¢,t] gives
26,A(t) = (6o—61) {oo—F[(6o+61) t]}+ (¢ +¢1) E[(eg—e1) 2], (A 3)

70-2
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and hence 26, N (£) = (B—c?) {E'[(co—¢,) t] — F'[(co+¢,) {1} (A 4)
But (1fey) (90]9t), = F'[(co+e1) 1] = E'[(co—e1) 2], (A 5)
so that 23N (t) = — (¢§—c}) (9o ]dt),. (A 6)

Now validity of the plastic stress distribution requires (do/dt), = 0 so that (A 6) implies
A (t) < 0 for all £ > 0, and hence A(¢) < 0 for all ¢ > 0 since A(0) = 0. In view of the defini-
tion A(¢) = 0 it follows that A(f) > 0 cannot occur for any ¢ >> 0; that is, no discontinuity
forms.

() X(t)—et (6>0),

G[— (co—cy) t]+A[(co+er) t] = A(¢) +F[2¢, ], (A7)
e{G[— (co—6)) t] =00 —h[(co+cy) t]} = cofA(Y) + 00— F[26, ]} (A8)

Eliminating A(¢), A[(¢,+¢,) {] in turn to determine the elastic stress distribution and the
discontinuity, then evaluating the time derivatives at the interface, shows that

2¢,N (1) = (3—0c2) (90)2K),. (A 9)

But validity of the elastic stress distribution requires (do/df), << 0 which again implies
A(t) < 0 for all t > 0, so that no discontinuity forms.

(i) X(t) =—ct (t=0),

Y[—6y8] = G[— (o+¢y) £]+A[ (c9—61) £] = oo-+e[ — 26, ] —A(8), (A 10)
(G — (6o+01) 11— 70— (cy—c1) 1} = cofe[ —26,£]+A(1)}. (A11)

Eliminating e[ —2¢,¢] and then A(¢), A[(¢c,—¢,) ¢] in turn leads to
263N (1) = — (3—3) (30 2).. (A12)

But here validity of the elastic stress distribution requires (do/dt), > 0 so again A(¢) < 0 for
all £ > 0 and no discontinuity forms.

(iv) X(8) ==t (£=0),

Y[—cot] = G[—2¢,t] +A(t) = f1—(co—e1) L] +e[— (¢g+¢1) 1], (A 13)
co{oo—fT—(co—e1) t]+e[—(er+a) 1]} = e{G[ —2¢0t] — 70 —A(2)}. (A 14)

Eliminating A(¢), f[— (¢o—¢;) t], e[ — (¢o+¢;) ] in turn leads to
26}A'(2) = — (c§—ct) (9o dt)y, (A 15)

so that the plastic loading requirement (do/dt), = 0 again implies A() < 0 for all # > 0 and
no discontinuity forms.
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APPENDIX B. SOLUTION FOR SPECIAL LINEAR PROFILES

The conditions derived in § 5 for the validity of the different solutions to the initial meeting
interaction allow, for the initial linear profiles '

Gx)y=1 (x< 0)1
Fix) =1 (x=0)]

the type C, B and D solutions. That is, they fail to select a unique type of solution. Solutions
of type £ and F, which require 2G” < Y’, are not possible initially since Y, <C 0. It is now
shown that these three valid solutions for the initial profiles (B 1) give identical stress
distributions for some interval ¢ >> 0, and their formal difference arises from the lack of an
explicit interface. Analogous situations in the general interaction are 2/’ = 2G" = Y’ = con-
stant, 2H' = 2G’ = Y’ = constant, and £’ = I’ = G’ = constant, where the initial distribu-
tions apply in their appropriate regions, and may be similarly interpreted.

Type C, 0 < X < ¢,.

Substituting the initial profiles defined by (B 1), together with G(0) = F(0) = 0, into
(4-1-10), (4-1-11) gives for ¢ > 0,

(A= 0) (B1)

R X(8) +cot] = MX(E) +ept), e[ X(¢)—et] = MHX(¢)—e¢ 8} (B 2)

That is, h(x) =Ax (x=0); ex) = (x<0); (B 3)
independent of X(¢). Then by (4-1-2), the stress in the elastic domain PON (figure 5) is
o(x,t) = 0o+ 2Ax, (B 4)

and is just the initial elastic wave in the domain AON. By (4-1-3), the stress in the plastic
domain POZ is (%, ) = 0o+ 2Ax, (B 5)

and in the domain DOZ is just the initial plastic wave. Thus, independent of the interface
path X(¢), the stress has the steady (time-independent) distribution (B 4) or (B 5) in the
domain NOZ. That is, the stress at each particle neither unloads nor loads, and validity
in both elastic and plastic regions is just satisfied. In particular, each particle in x > 0,
beyond OZ, remains just at yield, and the plastic-elastic interface path is not strictly defined,
but could be positioned anywhere in JOZ without contradiction.

Type B, ¢; < X < ¢,

By (5-2-6) it is seen that the initial conditions (B 1) imply X = ¢, a limit velocity of the
range, and then (4-2-2) shows that

h(x) = Az (x=0); | (B 6)

here ¢(x) = 0. In figure 6 the interface path OP is now just the limit characteristic OZ of
figure 5, and the elastic region is the domain NOZ, once again with stress distribution (B 4)
or (B 5). Outside NOZ the stress is given by the respective initial elastic and plastic waves.
Thus this solution is identical to the type C solution.

Type D, —¢; < X< 0.

Since Y < 0, (B 1) implies that for some initial interval ¥’ < 2G" = 2} evaluated on the
interface path, and hence by (4:3-3) X = 0, so that the interface path is O] in figure 5.
Substituting in (4-1-10), (4-1-11) again leads to (B 38) and (B 4), (B 5) for the elastic and
plastic stress distributions over the domain NOZ, identical to the previous solutions.

70-3
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ApPPENDIX C. INTERFACE ACCELERATION AT END POINTS OF VELOCITY RANGES

In each of the general solutions the interface velocity equation can be expressed in the
o [R() 4] Q) = £ (1), @)
where ¢ is a limit velocity of the range, « is constant, and the 4 signs apply when ¢ is the
lower and upper limit respectively. £2(¢), ¥'(¢) depend on appropriate initial wave and yield
stress functions evaluated on the interface path X(¢), defined as follows:

A: Q) = F"[X(t)+o t] —E"[X(t) —¢ ] 1
g=co, () =—(cyte) F'LX(t) +-e,t]+ (cg—ey) B'[X() —¢y2].)

B: Q) = 26, G'[X(t) —cot] + (cg—e)) F'[X() ¢, 1] — (co+¢1) E'[X (1) —ey1]
g =co V(t) = F[X(t)+0, 0] = E[X(t) —ert]; (G3)
g=c, W) = GLX() —cot] —F'[X(2) +¢, 8]

C: Q) = F'[X(t) o t] — G"[X(t) —cyt];
g=c, Y(t)=(cq—c;) G"[X(t)—cot]+ 2 F"[X(t)+e1t]; (G 4)
g=0, W(t)=—c; F"[X(t)+c;t]—co G"[X(t) —cot].

D Q(t) = 20 F[X(8) ¢, 8]+ 20, G'[ X (1) = 6ot] — (eo 1) Y[X(2)];
g=0, W) =F[X(t)+et]—G[X(8) =cot]; (G 5)
g =—c, W(t)=2G"[X(1)—cot] - Y'[X(2)].

E: Q) =Y'[X(#)]-2G"[X(t) —cot];
g=—c, F(t) =2(co+e;) G"[X(E) —¢ot] =, Y'[X(1)]; (G 6)
g=—cp V() =—4C"[X(t) —cot]+ Y'[X(0)].

F: Qt) = G'[X(t) —cot] + H'[X(2) +-cot] = Y'[X(2)]; 1
q=—cp, F(t)=—26G'[X(t) —¢ot]+ V'[X(1)].]

(C2)

(C7)

For simplicity assume that the limit velocity ¢ occurs at ¢ = 0 with X(0) = 0. In each case
X(0) = gimplies that ¥'(0) = 0, given by equality between the two appropriate component
function derivatives at ¢t = 0. The same function derivatives occur in the corresponding
(3(0), together with a third function derivative for types B, D and F. In these types, if equality
does not hold between all three function derivatives, then the respective validity conditions
demand

B: E'=F <G o E<F=(,
D: Y <2G" =2F or Y'=2G" < 2F', (G 8)
F: V' =2G" < 2H’,

all evaluated at ¢t = 0, and in each case it follows that
Q(0) > 0. (C9)

When the equality between all three does hold, and €2(0) = 0, the lowest derivative Q®(0),
K =1, for X = ¢, associated with the lowest non-vanishing derivative of the components in


http://rsta.royalsocietypublishing.org/

. \
A 2

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
¥ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

UNI-AXIAL ELASTIC-PLASTIC WAVE INTERACTIONS 551

the corresponding ¥'(¢), is independent of the third function since in each case this has
argument X(¢) —¢t. Now differentiating (C 1) shows that

(X —q) Q®(t) + g (If) XOQE9(1) = +a2PEO(¢t), (C 10)

and since all terms in the series vanish at t = 0 by definition of K, X = ¢ implies that
Y'®(0) = 0, and hence the lowest non-vanishing derivatives at ¢ = 0 of both components
must be the same order. With this restriction and the consequent validity conditions,
evaluated at ¢ = 0,

B: F =E =G}
g=¢y L=M=K+1, EM<0 (61-10), #(M)y=L®0)=0;} (C11)
g=¢, M=N=K+1, FO>0 (61-12), B(M)=PYD(0)=0;

D: 2F =2G =Y';
g=0, M=N=K+1, FM=0 (534), €M) =LD(0)=0;

(C12)
g=—c¢, S=N=K+1, 2(N)=¥D(0) =0,
= (—1)NY®™>0 (5313);
F. 2H =2G"=Y";
g=—c, S=N=K+1, (—1)"G® >0 (6313), ' (C 13)
E(N) =VY®(0) = 0;
it follows that QI(0) > 0. (C 14)

In view of (C 9), (C 14) applies to the first non-vanishing contribution for K > 0.
Similarly, the restricted validity conditions for types 4, C and E,

A: g=cy, L=M=K+2, FOO<0 (625), #(M)y=¥®0)=0; (C15)

C: M=N=K+2, FM>0 (51-14); 1 16
g=c, B(My="LO0)=0; ¢=0, E(M)="L0(0)=0; (C16)

E: S=N=K+2, (—1)"G®>0 (546);
(=1) (54-6) [

g=—c, ZNy="O0)=0; g=—¢, &N)="L5(0)=0;
again lead to (C 14) for K = 0. Thus, in all cases, (C 10) and (C 14) show that
X = g=P®(0) = 0, (G 18)
where W®(0) is the appropriate one of /(M) to &(N).
Continued differentiation of (C 10) gives for » > 1,

(X—g) Qe (t) + E (K—i—’) XOQET-9(1) = 4 g2 PE+(y), (C 19)

Now the first term, and the terms for s = -+ 1, ..., K+ in the series all vanish at ¢ = 0, and

the coefficient of X® is (Kj r) Q®(0), > 0. Thus applying (C 19) for r = 1,2, ... in turn
shows that )
X =0<=PEN0)=0 (r=1,...,m—1), (G 20)
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552 L. W. MORLAND AND A. D. COX

if $&+m(0), m = 1, is the lowest non-vanishing derivative. Further, setting r = m,
(K ) Q@(0) X = appinm(o). (C21)

In terms of new variables y(¢), z(¢) defined by
_ X+t L X—et,

4 and B, ¢=g¢,, P e (G 22)
Band C, ¢=c, :fg—o’fi)lf, Z:%g; (C 23)
Cand D, ¢=0, y:/-Y—%—lc—lt, z:c—o-tzotfg; (G 24)
Dand E, ¢g=—¢, y= %{1‘:, z= —g; - (G 25)
Eand F, q=—¢,, y:%;;f‘—,, z:—g—j; (G 26)
it follows that W(t) = ¥, (y) —¢o(2), (C 27)

where ¥, (y), ¥,(z) are the respective function derivatives given in order by (C 2) to (C 7).

Att=0(X=y9g),
y=z=0, y=2=1, §0=20=0 (r=1,...,m—1), (C 28)

using (C 20), and
FO(0) = ¢17(0) = y9(0) =0 (j=1,...,K-1), (G 29)

where () denotes derivative with respect to argument.
Now #{&+1(0), ¢+ (0), r = 0, are the respective component terms of &/(M-+r) to
E{N+r); for example:

B o)y = | 170 (@30

In particular, for r = 0, P®E(0) = ¢ (0) — ¢ (0) = 0, (C 31)
but it remains to shows that

PE(0) = 0 YFH7(0) —Y§I7(0) = 0 (r = 1,..,m—1),) )

WEEm () > 0<=yE+Hm(0) — ¢ f+m™(0) > 0, J

to verify the text expressions of the interface acceleration results (G 20), (C 21). One further
consequence of the validity conditions (C 11) to (C 13), (C 15) to (C 17), is that in all cases

Yi(0) [§—2]™ (0) o F X(0), (G 33)

where the F signs apply when ¢ is the lower and upper limit respectively.
Now following Goodstein (1948), p. 91, and using (C 29), it follows that

[P0 = 3 BT o) (= 1), (C34)
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where PX*7{y} depends only on y(¢) and derivatives, independent of the function ¢ (y). In
particular, at ¢ = 0,

y=0, PET{0) = [, PRI} = () =1. (C 35)
But at y = 0 we can deduce the general composition
[y’1? =27 11 [y7", (G 36)

where the y, are non-negative constants and the 1% are non-negative integers. Distinct
products are implied for each ¢. Making the linear transformations ¢ = Ai*, y = uy*, and
comparing the two forms, shows that for each ¢,

n

Vl; :“.j: 2 SV =
s=1

179
s

(5—1) ¥ = n—j. (C 37)

i 3
Y

s

If n = the only solution (z = 1) is v} =, vl = 0 (s > 2), which leads to the last result of
(G 35).Forn—j = k—1 (k = 2), the maximum possible s for which »% = 0, thatis the highest
derivative of y occurring, is s = k. Immediately PX*"{y} at y = 0 involves only derivatives
up to y&+7=9, and hence for eachj = K, ..., K+rand eachr <m—1, when K+r—j < m—1
in view of (C 28), it has a single positive term in 7, y} say. Further, the same result applies
to PK*7{z} at z = 0, by (C 28), so that

WE(0) = SRR O 0] (=1, ..,m=1), (C38)

which applied tor = 1, ...,m—1 in turn and using (C 31) verifies the first set of implications
in (C 32).
Finally, setting 7 = m in (C 34),
K+m—1 .
[FIEE) = PRy @)+ 2 Py @ (9) + Prm by )
=
(C 39)

where, repeating the above arguments and using (G 38), each term in the series is the same
when applied to ¥,(y) and ¥,(z) and evaluated at y = z = 0. Thus

W) (0) = YK+m(0) —yK+m(0) 4 Y (0) [PE+m{y}— PE+m{z}], (G 40)

where the last bracket is evaluated at y =z = 0. But at y = 0, PX¥*™{y} has the form
y(§)" (y™)*=+1 where y > 0 and

AV =K, mv, ,=m (C 41)

Thatis, v,,,; = 1, v, = K—1,s0 that P§*"{y = 0} = y5™, and hence the final term of (C 40)

becomes P2(0) [§—21 (0). (Ca2)
Combining (C 21), (C 33), (C 40) and (C 42), shows that

Xmoc L [{F+m (0) — g+ (0)], (C 43)

or equivalently the last implication of (C 32).
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APPENDIX D. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF THE
INTERFACE PATH EQUATIONS

In each of the six types of general solution, the interface path x = X (¢) is determined by

j;l ::;phdt equation of the form b(x, 1) = 0, (D 1)
A4: (6:2:1) ¢=F(x+ct)—E (x—ct); (D 2)
B: (6:1-1) ¢ = (co—¢q) {F(x+c18) = Yo} +20{G(x—cyt) — Yo} — (co+¢)) E(x—cyt); (D 3)
C: (4118) ¢ = F'(x40,0)— G (x—ayl); (D 4)
D: (432) ¢ =2 {F(x+c,t)—Yo}+2{G(x—cot) — Yo} — (¢y+¢) {Y (x) — Yo }; (D 5)
E: (444) ¢=1Y(x)—2G" (x—cyt); (D 6)
F: (6:31) ¢=Gx—cyt)+H(x+cyt)—Y(x). (D7)

Here it is assumed that the path starts at (0, 0), so that ¢(0, 0) = 0. Then, provided that
06| x, d|dt are continuous in a neighbourhood of (0, 0) and either dp/dx or ot 0 at
(0, 0), and hence in some neighbourhood, there exists a unique solution x = X(¢) in that
neighbourhood which passes through (0, 0). See, for example, Burkill (1962), p. 167. The
previous restrictions ensure that the interface velocity X (¢) is within the required range.
It remains to examine the situations when both dg/dx and d¢/dt = 0 at (0, 0). In each
type we are concerned only with solutions in a restricted domain, bounded by limit lines
x = ¢t and x = ¢,¢ where ¢,, ¢, are the appropriate limit velocities for the given type.

Figure 13 shows a typical domain bounded by limit lines OQV, OWR. For the existence of

t

V/
:
|
P

tot - -: ——————
)
]
w
0 oo £3

Ficure 13. Typical domain for an interface path equation.

a solution within such a domain it is sufficient to show that ¢ < 0 (say) onx = ¢,¢,¢ > Oon
x = gyt (t > 0), then for each fixed ¢, > 0, ¢ must vanish somewhere on QR, and for each
fixed xy == 0, ¢ must vanish somewhere on WV. If; further, ¢ is strictly monotonic along QR
or WV, then there is a single point at which ¢ vanishes, and the solution is unique. The
former property will now be verified for all the remaining cases, ensuring existence. Also
the latter property is verified except for a few particular sets of initial function conditions,
each of which is one of the sets, marked * in the tables, not sufficient to ensure a valid stress
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wave solution of the given type. In these few cases the present uniqueness proof for the
interface path fails, possibly because stronger validity conditions are required and, or,
possibly because the monotonicity condition is too strong.

Following are the conditions for each type when both d¢/dx and d¢/dt vanish at (0, 0),
together with expressions for the first non-vanishing ¢ = dm¢/d¢™ along x = ¢;¢ and
x = ¢,t, evaluated at (0, 0), and the text references to restrictions which verify the given
signs and hence ¢ 5 0 respectively over some finite section adjacent to (0, 0). Along the
limit line ¢ = 0, x > 0, of type 4, ¢ = dm@/dx™.

A: F'=FE"=0, L=M;
t=0, ¢m=Fmth_[Emth)> 0 (6-2:6), (D 8)
Q= 9 — (coe)m PO (qy—e)m EmD < 0 (6:27).

B: G =F =F,
2= 6o, 7 = (c5—cf) {(cy+ )" F™— (cy—¢y)" " E™} > 0,
L<M (6'1'10), L>M (6'1'12), L=M (6'1'15); (D 9)
gy =c¢p ¢ = 2c(co—cy) {(2e)" N F— (¢g—¢;)m ! (— 1)1 G} < 0,
N+M (6118), N=M (6:1-19).
C: F =G"=0, M=N,
Gy = ¢, P = (26))" FOD—(go—¢))" (—=1)" GV >0 (5:1-12); (D 10)
¢ =0, ¢m=crFmth_en(_1)mGm+D <0 (51-12).

D: 2F =26 = Y';
G =0, ¢ — 20, e OO — =1 (— 1) GO} > 05
M<N (534), M>N (536), M—=N (538); (D 11)
g1 =—c¢;, ™= (co+e;){2(co+e)mH (=1)mGM—cp~1 (—1)m Y™} < 0,
S+ N (5312), S=N (5317).
E: Y =2G"=0, §=N;
Gom—cy P — (— )T _2(g ) (— )G = 0 (54412); ) (D 12)
¢y = —Cp, ¢(m) — 6‘6”{(—1)’" Y(m+l)_2m+1(__1)m G’(m+1)} <0 (5413)

F: 2G'=2H =Y,
do =Gy P = e 2P(— 1) G (—1)m ) > 0,
S<N (5513), S>N (6313), S=N (5515);
t=0, ¢=—{Y(x)—0c(x,0)} <0 (elastic).

(D 13)

Finally, the monotonicity condition at a general point P(at,t),q; << @ < ¢,, is checked by
examining the leading term in the expansion for dg/dx or dg/dt about (0, 0), ¢ < 1, denoted
respectively by ¢,, ¢, after removal of the factor t/m!.

A: a>¢,, L=M,;

¢t = 61{(6‘1 _|_05)mF(m+2)_|_ (OC—(,‘I)’"E(’"+2)} <0 (6'2'5) J (D14)
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B: ¢ <a<ecy
B = (eo—c) (er-a)" P D420, (cy—a)m (— 1) G

—(¢o+¢1) (x—ey)™ E™ > 0,
L<M, N (6110, M<N (61-12), M>N (51-18),

M=N<L, FM>0=(—1)M1GM>0 (61-19); (D 15)
¢ = c{(co—0c1) (61 +a)™ Fo+D—2¢ (¢ —a)™ (—1)™ G™*D
+ (6g+¢y) (a—¢y)™ E™} <0,
M=N, FM<0, (—1)MI1GM=0, =M=L X=+¢ (6112).
C: 0<a<ye¢, M=N; 1
(D 16)
¢, = (¢;4+a)m Fm+2 | (c)—a)m (__1)m+1 Gm+2) ~ 0 (5,1.10).J
D: —0 <a<0;

1 = 2eyerd (e ) Frs D4 (cg—a) (— 1) Goni ) > o,
M<N (534), M>N (5386), M=N, (—1)NG®™> 0;
¢, = 26y(¢;+a)" F" D42, (¢y—a)™ (—1)™ Ge*D (D 17)
(o ter) (—a) (—1)m ¥ = o,
M=N, (—1)¥IGM>0 and S+ N (53-12),
or S=N, (—1)YY®>o0.

E: —¢g<a<—¢, S=N; D1s
P, = 2¢y(co—a)™ (—1)"G™*2 > 0 (5:4:6). ( )
F: a<—cy;
= (cg—a)" (— 1)L Gm D4 (—¢y—a)™ (—1)" HmD > 0,
$= (eo—a)" (—1) (—e—a)" (—1) D 10

N<P (6313), N>P, X+—c, (6:315),
N=P, (—1)M1H®>o.
The following initial conditions are not sufficient to verify the monotonicity requirement.
B: L=M=N, X+g¢, FO<0, (—1)M1G™ <0,
D: M=N=S§, (—1)¥1G™M>0, (—1)N1Y®>y, (D 20)
F: N>P, X=¢, or N=P and (—1)PH®>0.


http://rsta.royalsocietypublishing.org/

